pi-frame-server/src/dither.rs

254 lines
8.2 KiB
Rust
Raw Normal View History

2024-07-29 17:51:51 +00:00
use image::{GrayImage, ImageBuffer, Luma, RgbImage};
2024-07-28 14:28:06 +00:00
use palette::FromColor;
use serde::{Deserialize, Serialize};
2024-07-28 04:01:57 +00:00
use tracing::instrument;
2024-06-29 16:55:37 +00:00
2024-07-17 18:27:31 +00:00
use image::Rgb as imgRgb;
use palette::color_difference::{Ciede2000, HyAb};
2024-07-18 20:51:07 +00:00
use palette::{cast::FromComponents, IntoColor, Lab, Srgb};
2024-06-29 16:55:37 +00:00
#[derive(
strum::EnumString, strum::Display, Serialize, Deserialize, PartialEq, Eq, Debug, Clone,
)]
pub enum DitherMethod {
NearestNeighbor,
FloydSteinberg,
Atkinson,
Stuki,
Sierra,
}
impl DitherMethod {
#[must_use]
pub fn get_ditherer(&self) -> Box<dyn Ditherer> {
match self {
Self::NearestNeighbor => Box::new(NearestNeighbor {}),
Self::Atkinson => Box::new(ErrorDiffusion::new(ATKINSON_DITHER_POINTS)),
Self::FloydSteinberg => Box::new(ErrorDiffusion::new(FLOYD_STEINBERG_POINTS)),
Self::Stuki => Box::new(ErrorDiffusion::new(STUKI_DITHER_POINTS)),
Self::Sierra => Box::new(ErrorDiffusion::new(SIERRA_DITHER_POINTS)),
}
}
}
2024-07-29 17:51:51 +00:00
pub enum ProcessingError {
2024-07-28 14:28:06 +00:00
DitherError,
PaletteIndexError(usize),
}
2024-06-29 16:55:37 +00:00
2024-07-16 23:55:59 +00:00
/// Buffer to be sent to the ``EInk`` display.
2024-06-29 16:55:37 +00:00
#[derive(Debug)]
pub struct DitheredImage {
2024-07-28 14:28:06 +00:00
buf: ImageBuffer<Luma<u8>, Vec<u8>>,
palette: Vec<Srgb>,
}
2024-07-29 17:51:51 +00:00
impl DitheredImage {
2024-07-29 17:51:51 +00:00
#[must_use]
2024-07-28 14:28:06 +00:00
pub fn into_display_buffer(&self) -> Vec<u8> {
let mut buf = Vec::with_capacity(self.buf.len() / 2);
for pix in self.buf.chunks_exact(2) {
buf.push(pix[0] << 4 | pix[1]);
}
buf
}
/// Convert the index-based image back into an RGB image using the color palette.
2024-07-30 15:45:29 +00:00
///
/// # Panics
/// May panic if the given palette is somehow not the one used to actually dither, and the
/// image has color indexes that are out of bounds of the palette.
2024-07-29 17:51:51 +00:00
#[must_use]
2024-07-28 14:28:06 +00:00
pub fn into_rgbimage(&self) -> RgbImage {
RgbImage::from_fn(self.buf.width(), self.buf.height(), |x, y| {
let idx = self.buf.get_pixel(x, y).0[0];
let disp_color = self
.palette
.get(idx as usize)
.expect("Palette will never be out of bounds");
2024-07-28 14:28:06 +00:00
let arr: [u8; 3] = disp_color.into_format().into();
imgRgb(arr)
})
}
/// Constructs a new Dithered Image based on the given dimensions and color palette for
2024-07-28 14:28:06 +00:00
/// color indexing.
#[must_use]
pub fn new(width: u32, height: u32, palette: Vec<Srgb>) -> Self {
2024-07-28 14:28:06 +00:00
Self {
buf: GrayImage::new(width, height),
2024-07-28 14:28:06 +00:00
palette,
}
}
}
2024-06-29 16:55:37 +00:00
pub trait Ditherer {
fn dither(&mut self, img: &RgbImage, output: &mut DitheredImage);
2024-06-29 16:55:37 +00:00
}
/// Find the closest approximate palette color to the given sRGB value.
/// This uses euclidian distance in linear space.
fn nearest_neighbor(input_color: Lab, palette: &[Lab]) -> (u8, Lab) {
2024-07-28 14:28:06 +00:00
let (nearest, _, color_diff) = palette
.iter()
.enumerate()
.map(|(idx, p_color)| {
(
idx,
input_color.difference(*p_color),
input_color - *p_color,
)
2024-07-28 14:28:06 +00:00
})
.min_by(|(_, a, _), (_, b, _)| a.total_cmp(b))
.expect("Should always find a color");
2024-07-29 17:51:51 +00:00
(nearest as u8, color_diff)
2024-06-29 16:55:37 +00:00
}
pub struct NearestNeighbor();
2024-06-29 16:55:37 +00:00
impl Ditherer for NearestNeighbor {
fn dither(&mut self, img: &RgbImage, output: &mut DitheredImage) {
2024-07-02 15:57:29 +00:00
// sRGB view into the given image. zero copy!
2024-06-29 16:55:37 +00:00
let srgb = <&[Srgb<u8>]>::from_components(&**img);
2024-07-02 15:57:29 +00:00
let lab_palette: Vec<Lab> = output.palette.iter().map(|c| Lab::from_color(*c)).collect();
2024-07-29 17:51:51 +00:00
for (idx, pix) in output.buf.iter_mut().enumerate() {
let (n, _) = nearest_neighbor(srgb[idx].into_format().into_color(), &lab_palette);
2024-07-29 17:51:51 +00:00
*pix = n;
2024-07-02 15:57:29 +00:00
}
2024-06-29 16:55:37 +00:00
}
}
2024-07-02 15:57:29 +00:00
2024-07-17 05:24:11 +00:00
/// Compute the vector index for a given image by using the size of rows. Assumes that images
/// are indexed in row-major order.
const fn coord_to_idx(x: u32, y: u32, xsize: u32) -> usize {
(y * xsize + x) as usize
}
/// Compute the error-adjusted new lab value based on the error value of the currently scanned
/// pixel multiplied by a scalar factor.
2024-07-28 14:28:06 +00:00
fn compute_error_adjusted_color(orig: &Lab, err: &Lab, weight: f32) -> Lab {
*orig + *err * weight
2024-07-17 05:24:11 +00:00
}
/// ``DiffusionPoint`` is part of the diffusion matrix, represented by a shift in x and y and an error
/// scaling factor.
#[derive(Debug)]
pub struct DiffusionPoint {
2024-07-17 05:24:11 +00:00
xshift: i32,
yshift: i32,
scale: f32,
}
impl DiffusionPoint {
/// Creates a new ``DiffusionPoint``
2024-07-17 05:24:11 +00:00
const fn new(xshift: i32, yshift: i32, scale: f32) -> Self {
Self {
xshift,
yshift,
scale,
}
}
}
static FLOYD_STEINBERG_POINTS: &[DiffusionPoint] = &[
2024-07-17 05:24:11 +00:00
DiffusionPoint::new(1, 0, 7.0 / 16.0),
DiffusionPoint::new(-1, 1, 3.0 / 16.0),
DiffusionPoint::new(0, 1, 5.0 / 16.0),
DiffusionPoint::new(1, 1, 1.0 / 16.0),
];
static ATKINSON_DITHER_POINTS: &[DiffusionPoint] = &[
DiffusionPoint::new(1, 0, 1.0 / 8.0),
DiffusionPoint::new(2, 0, 1.0 / 8.0),
DiffusionPoint::new(-1, 1, 1.0 / 8.0),
DiffusionPoint::new(0, 1, 1.0 / 8.0),
DiffusionPoint::new(1, 1, 1.0 / 8.0),
DiffusionPoint::new(0, 2, 1.0 / 8.0),
];
static SIERRA_DITHER_POINTS: &[DiffusionPoint] = &[
DiffusionPoint::new(1, 0, 5.0 / 32.0),
DiffusionPoint::new(2, 0, 3.0 / 32.0),
DiffusionPoint::new(-2, 1, 2.0 / 32.0),
DiffusionPoint::new(-1, 1, 4.0 / 32.0),
DiffusionPoint::new(0, 1, 5.0 / 32.0),
DiffusionPoint::new(1, 1, 4.0 / 32.0),
DiffusionPoint::new(2, 1, 2.0 / 32.0),
DiffusionPoint::new(-1, 2, 2.0 / 32.0),
DiffusionPoint::new(0, 2, 3.0 / 32.0),
DiffusionPoint::new(1, 2, 2.0 / 32.0),
];
static STUKI_DITHER_POINTS: &[DiffusionPoint] = &[
DiffusionPoint::new(1, 0, 8.0 / 42.0),
DiffusionPoint::new(2, 0, 4.0 / 42.0),
DiffusionPoint::new(-2, 1, 2.0 / 42.0),
DiffusionPoint::new(-1, 1, 4.0 / 42.0),
DiffusionPoint::new(0, 1, 8.0 / 42.0),
DiffusionPoint::new(1, 1, 4.0 / 42.0),
DiffusionPoint::new(2, 1, 2.0 / 42.0),
DiffusionPoint::new(-2, 2, 1.0 / 42.0),
DiffusionPoint::new(-1, 2, 2.0 / 42.0),
DiffusionPoint::new(0, 2, 4.0 / 42.0),
DiffusionPoint::new(1, 2, 2.0 / 42.0),
DiffusionPoint::new(1, 2, 1.0 / 42.0),
2024-07-17 15:20:06 +00:00
];
2024-07-17 05:24:11 +00:00
pub type DiffusionMatrix<'a> = &'a [DiffusionPoint];
#[derive(Debug)]
pub struct ErrorDiffusion<'a>(&'a [DiffusionPoint]);
impl<'a> ErrorDiffusion<'a> {
#[must_use]
pub const fn new(dm: DiffusionMatrix<'a>) -> Self {
Self(dm)
}
}
impl<'a> Ditherer for ErrorDiffusion<'a> {
#[instrument]
fn dither(&mut self, img: &RgbImage, output: &mut DitheredImage) {
2024-07-16 23:55:59 +00:00
// create a copy of the image in Lab space, mutable.
2024-07-28 14:28:06 +00:00
// first, a view into the rgb components
2024-07-16 23:55:59 +00:00
let srgb = <&[Srgb<u8>]>::from_components(&**img);
2024-07-17 05:24:11 +00:00
let (xsize, ysize) = img.dimensions();
2024-07-28 14:28:06 +00:00
// our destination buffer.
2024-07-17 05:24:11 +00:00
let mut temp_img: Vec<Lab> = Vec::with_capacity((xsize * ysize) as usize);
2024-07-16 23:55:59 +00:00
for pix in srgb {
temp_img.push(pix.into_format().into_color());
}
let lab_palette: Vec<Lab> = output.palette.iter().map(|c| Lab::from_color(*c)).collect();
2024-07-17 05:24:11 +00:00
// TODO: rework this to make more sense.
2024-07-17 05:24:11 +00:00
for y in 0..ysize {
for x in 0..xsize {
let index = coord_to_idx(x, y, xsize);
let curr_pix = temp_img[index];
let (nearest, err) = nearest_neighbor(curr_pix, &lab_palette);
2024-07-17 05:24:11 +00:00
// set the color in the output buffer.
*output
.buf
.get_mut(index)
.expect("always in bounds of image") = nearest;
2024-07-17 05:24:11 +00:00
// take the error, and propagate it.
for point in self.0 {
// bounds checking.
2024-07-17 05:24:11 +00:00
let Some(target_x) = x.checked_add_signed(point.xshift) else {
continue;
};
let Some(target_y) = y.checked_add_signed(point.yshift) else {
continue;
};
let target = coord_to_idx(target_x, target_y, xsize);
2024-07-17 05:24:11 +00:00
if let Some(pix) = temp_img.get(target) {
2024-07-28 14:28:06 +00:00
temp_img[target] = compute_error_adjusted_color(pix, &err, point.scale);
2024-07-17 05:24:11 +00:00
}
}
}
}
2024-07-16 23:55:59 +00:00
}
}