solarcarsim/notebooks/testing.ipynb
2024-12-20 16:58:51 -06:00

2932 lines
181 KiB
Plaintext

{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"Array([ 0.0000000e+00, -2.5544850e-07, -1.4012958e-06, ...,\n",
" -1.1142221e-02, -1.1067827e-02, -1.1001030e-02], dtype=float32)"
]
},
"execution_count": 1,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"import jax\n",
"import jax.numpy as jnp\n",
"from solarcarsim.physsim import CarParams, fractal_noise_1d\n",
"from solarcarsim.simv2 import Snax, SimParams\n",
"import chex\n",
"\n",
"\n",
"key = jax.random.key(0)\n",
"\n",
"slope = fractal_noise_1d(key, 10000, scale=1200, height_scale=0.08)\n",
"\n",
"slope"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [],
"source": [
"# make a simple triangle-type hill. Slope is 0.2 and then -0.2\n",
"dist = 1000 # it's 1 km long\n",
"xcoords = jnp.arange(dist)\n",
"slope = jnp.concat([jnp.full(int(dist/2), 0.2), jnp.full(int(dist/2), -0.2)])\n",
"def lerp(x):\n",
" return jnp.interp(x, xcoords, slope)"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [],
"source": [
"time_scale = 0.1\n"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [],
"source": [
"import jax\n",
"import jax.numpy as jnp\n",
"import flax.linen as nn\n",
"import numpy as np\n",
"import optax\n",
"from flax.linen.initializers import constant, orthogonal\n",
"from typing import Sequence, NamedTuple, Any\n",
"from flax.training.train_state import TrainState\n",
"import distrax\n",
"from gymnax.wrappers.purerl import LogWrapper, FlattenObservationWrapper\n",
"\n",
"\n",
"class GymnaxWrapper(object):\n",
" \"\"\"Base class for Gymnax wrappers.\"\"\"\n",
"\n",
" def __init__(self, env):\n",
" self._env = env\n",
"\n",
" # provide proxy access to regular attributes of wrapped object\n",
" def __getattr__(self, name):\n",
" return getattr(self._env, name)\n",
"\n",
"\n",
"class VecEnv(GymnaxWrapper):\n",
" def __init__(self, env):\n",
" super().__init__(env)\n",
" self.reset = jax.vmap(self._env.reset, in_axes=(0, None))\n",
" self.step = jax.vmap(self._env.step, in_axes=(0, 0, 0, None))\n",
"\n",
"class ClipAction(GymnaxWrapper):\n",
" def __init__(self, env, low=-1.0, high=1.0):\n",
" super().__init__(env)\n",
" self.low = low\n",
" self.high = high\n",
"\n",
" def step(self, key, state, action, params=None):\n",
" \"\"\"TODO: In theory the below line should be the way to do this.\"\"\"\n",
" # action = jnp.clip(action, self.env.action_space.low, self.env.action_space.high)\n",
" action = jnp.clip(action, self.low, self.high)\n",
" return self._env.step(key, state, action, params)\n",
"\n",
"\n",
"\n",
"class ActorCritic(nn.Module):\n",
" action_dim: Sequence[int]\n",
" activation: str = \"tanh\"\n",
"\n",
" @nn.compact\n",
" def __call__(self, x):\n",
" if self.activation == \"relu\":\n",
" activation = nn.relu\n",
" else:\n",
" activation = nn.tanh\n",
" actor_mean = nn.Dense(\n",
" 256, kernel_init=orthogonal(np.sqrt(2)), bias_init=constant(0.0)\n",
" )(x)\n",
" actor_mean = activation(actor_mean)\n",
" actor_mean = nn.Dense(\n",
" 256, kernel_init=orthogonal(np.sqrt(2)), bias_init=constant(0.0)\n",
" )(actor_mean)\n",
" actor_mean = activation(actor_mean)\n",
" actor_mean = nn.Dense(\n",
" self.action_dim, kernel_init=orthogonal(0.01), bias_init=constant(0.0)\n",
" )(actor_mean)\n",
" actor_logtstd = self.param(\"log_std\", nn.initializers.zeros, (self.action_dim,))\n",
" pi = distrax.MultivariateNormalDiag(actor_mean, jnp.exp(actor_logtstd))\n",
"\n",
" critic = nn.Dense(\n",
" 256, kernel_init=orthogonal(np.sqrt(2)), bias_init=constant(0.0)\n",
" )(x)\n",
" critic = activation(critic)\n",
" critic = nn.Dense(\n",
" 256, kernel_init=orthogonal(np.sqrt(2)), bias_init=constant(0.0)\n",
" )(critic)\n",
" critic = activation(critic)\n",
" critic = nn.Dense(1, kernel_init=orthogonal(1.0), bias_init=constant(0.0))(\n",
" critic\n",
" )\n",
"\n",
" return pi, jnp.squeeze(critic, axis=-1)\n",
"\n",
"\n",
"class Transition(NamedTuple):\n",
" done: jnp.ndarray\n",
" action: jnp.ndarray\n",
" value: jnp.ndarray\n",
" reward: jnp.ndarray\n",
" log_prob: jnp.ndarray\n",
" obs: jnp.ndarray\n",
" info: jnp.ndarray\n",
"\n",
"\n",
"def make_train(config):\n",
" config[\"NUM_UPDATES\"] = (\n",
" config[\"TOTAL_TIMESTEPS\"] // config[\"NUM_STEPS\"] // config[\"NUM_ENVS\"]\n",
" )\n",
" config[\"MINIBATCH_SIZE\"] = (\n",
" config[\"NUM_ENVS\"] * config[\"NUM_STEPS\"] // config[\"NUM_MINIBATCHES\"]\n",
" )\n",
" env = Snax()\n",
" env_params = env.default_params\n",
" env = LogWrapper(env)\n",
" env = VecEnv(env)\n",
" #env = ClipAction(env)\n",
" # if config[\"NORMALIZE_ENV\"]:\n",
" # env = NormalizeVecObservation(env)\n",
" # env = NormalizeVecReward(env, config[\"GAMMA\"])\n",
"\n",
" def linear_schedule(count):\n",
" frac = (\n",
" 1.0\n",
" - (count // (config[\"NUM_MINIBATCHES\"] * config[\"UPDATE_EPOCHS\"]))\n",
" / config[\"NUM_UPDATES\"]\n",
" )\n",
" return config[\"LR\"] * frac\n",
"\n",
" def train(rng):\n",
" # INIT NETWORK\n",
" network = ActorCritic(\n",
" env.action_space(env_params).shape[0], activation=config[\"ACTIVATION\"]\n",
" )\n",
" rng, _rng = jax.random.split(rng)\n",
" init_x = jnp.zeros(env.observation_space(env_params).shape)\n",
" network_params = network.init(_rng, init_x)\n",
" if config[\"ANNEAL_LR\"]:\n",
" tx = optax.chain(\n",
" optax.clip_by_global_norm(config[\"MAX_GRAD_NORM\"]),\n",
" optax.adam(learning_rate=linear_schedule, eps=1e-5),\n",
" )\n",
" else:\n",
" tx = optax.chain(\n",
" optax.clip_by_global_norm(config[\"MAX_GRAD_NORM\"]),\n",
" optax.adam(config[\"LR\"], eps=1e-5),\n",
" )\n",
" train_state = TrainState.create(\n",
" apply_fn=network.apply,\n",
" params=network_params,\n",
" tx=tx,\n",
" )\n",
"\n",
" # INIT ENV\n",
" rng, _rng = jax.random.split(rng)\n",
" reset_rng = jax.random.split(_rng, config[\"NUM_ENVS\"])\n",
" obsv, env_state = env.reset(reset_rng, env_params)\n",
"\n",
" # TRAIN LOOP\n",
" def _update_step(runner_state, unused):\n",
" # COLLECT TRAJECTORIES\n",
" def _env_step(runner_state, unused):\n",
" train_state, env_state, last_obs, rng = runner_state\n",
"\n",
" # SELECT ACTION\n",
" rng, _rng = jax.random.split(rng)\n",
" pi, value = network.apply(train_state.params, last_obs)\n",
" action = pi.sample(seed=_rng)\n",
" log_prob = pi.log_prob(action)\n",
"\n",
" # STEP ENV\n",
" rng, _rng = jax.random.split(rng)\n",
" rng_step = jax.random.split(_rng, config[\"NUM_ENVS\"])\n",
" obsv, env_state, reward, done, info = env.step(\n",
" rng_step, env_state, action, env_params\n",
" )\n",
" transition = Transition(\n",
" done, action, value, reward, log_prob, last_obs, info\n",
" )\n",
" runner_state = (train_state, env_state, obsv, rng)\n",
" return runner_state, transition\n",
"\n",
" runner_state, traj_batch = jax.lax.scan(\n",
" _env_step, runner_state, None, config[\"NUM_STEPS\"]\n",
" )\n",
"\n",
" # CALCULATE ADVANTAGE\n",
" train_state, env_state, last_obs, rng = runner_state\n",
" _, last_val = network.apply(train_state.params, last_obs)\n",
"\n",
" def _calculate_gae(traj_batch, last_val):\n",
" def _get_advantages(gae_and_next_value, transition):\n",
" gae, next_value = gae_and_next_value\n",
" done, value, reward = (\n",
" transition.done,\n",
" transition.value,\n",
" transition.reward,\n",
" )\n",
" delta = reward + config[\"GAMMA\"] * next_value * (1 - done) - value\n",
" gae = (\n",
" delta\n",
" + config[\"GAMMA\"] * config[\"GAE_LAMBDA\"] * (1 - done) * gae\n",
" )\n",
" return (gae, value), gae\n",
"\n",
" _, advantages = jax.lax.scan(\n",
" _get_advantages,\n",
" (jnp.zeros_like(last_val), last_val),\n",
" traj_batch,\n",
" reverse=True,\n",
" unroll=16,\n",
" )\n",
" return advantages, advantages + traj_batch.value\n",
"\n",
" advantages, targets = _calculate_gae(traj_batch, last_val)\n",
"\n",
" # UPDATE NETWORK\n",
" def _update_epoch(update_state, unused):\n",
" def _update_minbatch(train_state, batch_info):\n",
" traj_batch, advantages, targets = batch_info\n",
"\n",
" def _loss_fn(params, traj_batch, gae, targets):\n",
" # RERUN NETWORK\n",
" pi, value = network.apply(params, traj_batch.obs)\n",
" log_prob = pi.log_prob(traj_batch.action)\n",
"\n",
" # CALCULATE VALUE LOSS\n",
" value_pred_clipped = traj_batch.value + (\n",
" value - traj_batch.value\n",
" ).clip(-config[\"CLIP_EPS\"], config[\"CLIP_EPS\"])\n",
" value_losses = jnp.square(value - targets)\n",
" value_losses_clipped = jnp.square(value_pred_clipped - targets)\n",
" value_loss = (\n",
" 0.5 * jnp.maximum(value_losses, value_losses_clipped).mean()\n",
" )\n",
"\n",
" # CALCULATE ACTOR LOSS\n",
" ratio = jnp.exp(log_prob - traj_batch.log_prob)\n",
" gae = (gae - gae.mean()) / (gae.std() + 1e-8)\n",
" loss_actor1 = ratio * gae\n",
" loss_actor2 = (\n",
" jnp.clip(\n",
" ratio,\n",
" 1.0 - config[\"CLIP_EPS\"],\n",
" 1.0 + config[\"CLIP_EPS\"],\n",
" )\n",
" * gae\n",
" )\n",
" loss_actor = -jnp.minimum(loss_actor1, loss_actor2)\n",
" loss_actor = loss_actor.mean()\n",
" entropy = pi.entropy().mean()\n",
"\n",
" total_loss = (\n",
" loss_actor\n",
" + config[\"VF_COEF\"] * value_loss\n",
" - config[\"ENT_COEF\"] * entropy\n",
" )\n",
" return total_loss, (value_loss, loss_actor, entropy)\n",
"\n",
" grad_fn = jax.value_and_grad(_loss_fn, has_aux=True)\n",
" total_loss, grads = grad_fn(\n",
" train_state.params, traj_batch, advantages, targets\n",
" )\n",
" train_state = train_state.apply_gradients(grads=grads)\n",
" return train_state, total_loss\n",
"\n",
" train_state, traj_batch, advantages, targets, rng = update_state\n",
" rng, _rng = jax.random.split(rng)\n",
" batch_size = config[\"MINIBATCH_SIZE\"] * config[\"NUM_MINIBATCHES\"]\n",
" assert (\n",
" batch_size == config[\"NUM_STEPS\"] * config[\"NUM_ENVS\"]\n",
" ), \"batch size must be equal to number of steps * number of envs\"\n",
" permutation = jax.random.permutation(_rng, batch_size)\n",
" batch = (traj_batch, advantages, targets)\n",
" batch = jax.tree_util.tree_map(\n",
" lambda x: x.reshape((batch_size,) + x.shape[2:]), batch\n",
" )\n",
" shuffled_batch = jax.tree_util.tree_map(\n",
" lambda x: jnp.take(x, permutation, axis=0), batch\n",
" )\n",
" minibatches = jax.tree_util.tree_map(\n",
" lambda x: jnp.reshape(\n",
" x, [config[\"NUM_MINIBATCHES\"], -1] + list(x.shape[1:])\n",
" ),\n",
" shuffled_batch,\n",
" )\n",
" train_state, total_loss = jax.lax.scan(\n",
" _update_minbatch, train_state, minibatches\n",
" )\n",
" update_state = (train_state, traj_batch, advantages, targets, rng)\n",
" return update_state, total_loss\n",
"\n",
" update_state = (train_state, traj_batch, advantages, targets, rng)\n",
" update_state, loss_info = jax.lax.scan(\n",
" _update_epoch, update_state, None, config[\"UPDATE_EPOCHS\"]\n",
" )\n",
" train_state = update_state[0]\n",
" metric = traj_batch.info\n",
" rng = update_state[-1]\n",
" if config.get(\"DEBUG\"):\n",
"\n",
" def callback(info):\n",
" return_values = info[\"returned_episode_returns\"][\n",
" info[\"returned_episode\"]\n",
" ]\n",
" timesteps = (\n",
" info[\"timestep\"][info[\"returned_episode\"]] * config[\"NUM_ENVS\"]\n",
" )\n",
" for t in range(len(timesteps)):\n",
" print(\n",
" f\"global step={timesteps[t]}, episodic return={return_values[t]}\"\n",
" )\n",
"\n",
" jax.debug.callback(callback, metric)\n",
"\n",
" runner_state = (train_state, env_state, last_obs, rng)\n",
" return runner_state, metric\n",
"\n",
" rng, _rng = jax.random.split(rng)\n",
" runner_state = (train_state, env_state, obsv, _rng)\n",
" metrics = []\n",
" for i in range(config[\"NUM_MAINLOOPS\"]):\n",
" runner_state, metric = jax.lax.scan(\n",
" _update_step, runner_state, None, config[\"NUM_UPDATES\"]\n",
" )\n",
" metrics.append(metric)\n",
" return {\"runner_state\": runner_state, \"metrics\": metrics}\n",
"\n",
" return train\n"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [],
"source": [
"config = {\n",
" \"LR\": 3e-4,\n",
" \"NUM_ENVS\": 2048,\n",
" \"NUM_STEPS\": 10,\n",
" \"TOTAL_TIMESTEPS\": 5e7,\n",
" \"UPDATE_EPOCHS\": 4,\n",
" \"NUM_MINIBATCHES\": 64,\n",
" \"GAMMA\": 0.99,\n",
" \"GAE_LAMBDA\": 0.95,\n",
" \"CLIP_EPS\": 0.2,\n",
" \"ENT_COEF\": 0.0,\n",
" \"VF_COEF\": 0.5,\n",
" \"MAX_GRAD_NORM\": 0.5,\n",
" \"ACTIVATION\": \"tanh\",\n",
" \"ENV_NAME\": \"hopper\",\n",
" \"ANNEAL_LR\": False,\n",
" \"NORMALIZE_ENV\": True,\n",
" \"DEBUG\": False,\n",
" \"NUM_MAINLOOPS\": 3,\n",
"}\n",
"config_light = {\n",
" \"LR\": 3e-4,\n",
" \"NUM_ENVS\": 128,\n",
" \"NUM_STEPS\": 10,\n",
" \"TOTAL_TIMESTEPS\": 5e3,\n",
" \"UPDATE_EPOCHS\": 2,\n",
" \"NUM_MINIBATCHES\": 16,\n",
" \"GAMMA\": 0.99,\n",
" \"GAE_LAMBDA\": 0.95,\n",
" \"CLIP_EPS\": 0.2,\n",
" \"ENT_COEF\": 0.0,\n",
" \"VF_COEF\": 0.5,\n",
" \"MAX_GRAD_NORM\": 0.5,\n",
" \"ACTIVATION\": \"tanh\",\n",
" \"ENV_NAME\": \"hopper\",\n",
" \"ANNEAL_LR\": False,\n",
" \"NORMALIZE_ENV\": True,\n",
" \"DEBUG\": False,\n",
"}\n",
"\n",
"rng = jax.random.key(42)\n",
"train_jit = jax.jit(make_train(config))\n",
"out = train_jit(rng)"
]
},
{
"cell_type": "code",
"execution_count": 15,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAjcAAAHHCAYAAABDUnkqAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAABhKElEQVR4nO3deVhU1f8H8PewDSCrsikiuIKGioIgmeKC4ZLZZmbmgtov/WpZlIVp4JZYtlhpWpbaommalaViikuaKApi4oIr4sbiAoOoLDPn94dxYWRAloELw/v1PPM895577r2fC8Z8OvcsCiGEABEREZGBMJI7ACIiIiJ9YnJDREREBoXJDRERERkUJjdERERkUJjcEBERkUFhckNEREQGhckNERERGRQmN0RERGRQmNwQERGRQWFyQ0RERAaFyQ1RHbZq1SooFArpY25ujnbt2mHKlClIT0+X6u3evVurnqmpKVq1aoXRo0fj/Pnzpa5748YNTJs2DZ6enjA3N0fjxo0REhKCP//8s9IxqtVqNGvWDAqFAlu3bq3W89aEEydOYNasWUhJSalQ/VmzZpX6WXp4eOC1115DVlZWlWLYv38/Zs2aVeXziahyTOQOgIgebs6cOWjZsiXu3buHffv2YenSpdiyZQuSkpJgaWkp1XvttdfQrVs3FBQUICEhAV9//TU2b96MY8eOoVmzZgCA5ORk9OvXD5mZmQgNDYWfnx+ysrKwevVqDBkyBG+99RYWLlxY4dh27tyJa9euwcPDA6tXr8bAgQP1/vzVceLECcyePRu9e/eGh4dHhc9bunQprKyskJubi5iYGHzxxRdISEjAvn37Kh3D/v37MXv2bIwdOxZ2dnaVPp+IKkkQUZ21cuVKAUAcOnRIqzwsLEwAEGvWrBFCCLFr1y4BQKxfv16r3ueffy4AiPnz5wshhMjPzxfe3t7C0tJSHDhwQKtuYWGhGD58uAAg1q5dW+EYR48eLbp27So+++wz0ahRI3H79u2qPGqNWb9+vQAgdu3aVaH6kZGRAoDIzMzUKi/62Rw8eLDSMSxcuFAAEBcuXKj0ueWpaz9rorqCr6WI6qG+ffsCAC5cuFCper/88guSkpIQHh6OgIAArbrGxsb46quvYGdnh1mzZlUojrt37+LXX3/FCy+8gOeffx53797F77//rrPu+vXr0aFDB5ibm8Pb2xu//vorxo4dW6o1RaPRYNGiRXjkkUdgbm4OZ2dnvPLKK7h165ZWPQ8PDzzxxBPYt28f/P39YW5ujlatWuH777+X6qxatQrDhg0DAPTp00d61bR79+4KPV9JPXv2BACcO3dOq/zgwYMYMGAAbG1tYWlpiaCgIPzzzz/S8VmzZmHatGkAgJYtW0oxpKSkICUlBQqFAqtWrSp1P4VCofV7KHpdduLECbz44ouwt7fHY489VuGfBQAUFBRg9uzZaNu2LczNzdGkSRM89thj2L59e6V/HkR1GZMbonqo6Au2SZMmlar3xx9/AABGjx6ts76trS2GDh2KU6dO4ezZsw+NY9OmTbh9+zZeeOEFuLi4oHfv3li9enWpeps3b8bw4cNhamqKqKgoPPPMMxg/fjzi4+NL1X3llVcwbdo09OjRA5999hlCQ0OxevVqhISEoKCgQKvu2bNn8dxzz6F///74+OOPYW9vj7Fjx+L48eMAgF69euG1114DALz77rv44Ycf8MMPP6B9+/YPfbYHFfXZsbe3l8p27tyJXr16QaVSITIyEvPnz0dWVhb69u2LuLg4AMAzzzyDESNGAAA+/fRTKQZHR8dKxwAAw4YNw507dzB//ny8/PLLFf5ZAPcTpNmzZ6NPnz5YvHgxZsyYgRYtWiAhIaFKsRDVWXI3HRFR2YpeS+3YsUNkZmaKS5cuibVr14omTZoICwsLcfnyZSFE8WupFStWiMzMTHH16lWxefNm4eHhIRQKhfRay8fHR9ja2pZ7z08++UQAEJs2bXpofE888YTo0aOHtP/1118LExMTkZGRoVWvY8eOonnz5iInJ0cq2717twAg3N3dpbK9e/cKAGL16tVa50dHR5cqd3d3FwDE33//LZVlZGQIpVIp3nzzTamsqq+lkpOTRWZmpkhJSRErVqwQFhYWwtHRUeTm5gohhNBoNKJt27YiJCREaDQa6fw7d+6Ili1biv79+0tlZb2WunDhggAgVq5cWSoOACIyMrJUXCNGjChVt6I/i86dO4vBgwdX6OdAVJ+x5YaoHggODoajoyPc3NzwwgsvwMrKCr/++itcXV216o0bNw6Ojo5o1qwZBg8ejNzcXHz33Xfw8/MDAOTk5MDa2rrcexUdV6lU5da7ceMGtm3bJrVKAMCzzz4LhUKBn3/+WSq7evUqjh07htGjR8PKykoqDwoKQseOHbWuuX79etja2qJ///64fv269PH19YWVlRV27dqlVb9Dhw7S6yIAcHR0hKenp84RYpXl6ekJR0dHeHh4YNy4cWjTpg22bt0qdeBOTEzEmTNn8OKLL+LGjRtSrLm5uejXrx/+/vtvaDSaasfxoIkTJ+osr8jPws7ODsePH8eZM2f0HhdRXcLRUkT1wJIlS9CuXTuYmJjA2dkZnp6eMDIq/f8mERER6NmzJ4yNjeHg4ID27dvDxKT4P3Nra2tcv3693Hvl5ORIdcuzbt06FBQUoEuXLlqvsAICArB69WpMnjwZAHDx4kUAQJs2bUpdo02bNlqvRM6cOYPs7Gw4OTnpvGdGRobWfosWLUrVsbe3L9U/pyp++eUX2NjYIDMzE59//jkuXLgACwsLrVgBYMyYMWVeIzs7W+s1lj60bNlSZ3lFfhZz5szB0KFD0a5dO3h7e2PAgAEYNWoUOnXqpNcYieTG5IaoHvD395daX8rTsWNHBAcHl3m8ffv2SExMRGpqqs4vQwD4999/AdxvCShPUd+aHj166Dx+/vx5tGrV6qExl6TRaODk5KSz3w6AUv1UjI2NddYTQlTqvrr06tULDg4OAIAhQ4agY8eOGDlyJOLj42FkZCS1yixcuBA+Pj46r1GypUoXhUKhs1ytVpd5TskEq6SK/Cx69eqFc+fO4ffff8dff/2Fb775Bp9++imWLVuGCRMmlBsrUX3C5IaoAXniiSfw008/4fvvv8fMmTNLHVepVPj999/h5eWls6WlyIULF7B//35MmTIFQUFBWsc0Gg1GjRqFNWvWYObMmXB3dwcAnR2UHyxr3bo1duzYgR49epT5JV5ZZSUQlWFlZYXIyEiEhobi559/xgsvvIDWrVsDAGxsbMpNKMuLoahV58HJ/Ypau2pC48aNERoaitDQUNy+fRu9evXCrFmzmNyQQWGfG6IG5LnnnkOHDh2wYMECHD58WOuYRqPBpEmTcOvWLURGRpZ7naKWlbfffhvPPfec1uf5559HUFCQVKdZs2bw9vbG999/j9u3b0vX2LNnD44dO6Z13eeffx5qtRpz584tdc/CwsIqzfDbqFEjAKUTiMoaOXIkmjdvjg8++AAA4Ovri9atW+Ojjz7Seq4imZmZD43BxsYGDg4O+Pvvv7XKv/zyy2rFWpYbN25o7VtZWaFNmzbIy8urkfsRyYUtN0QNiJmZGTZs2IB+/frhscce05qheM2aNUhISMCbb76JF154odzrrF69Gj4+PnBzc9N5/Mknn8Srr76KhIQEdO3aFfPnz8fQoUPRo0cPhIaG4tatW1i8eDG8vb21EoOgoCC88soriIqKQmJiIh5//HGYmprizJkzWL9+PT777DM899xzlXpmHx8fGBsb44MPPkB2djaUSiX69u1bZr+espiammLq1KmYNm0aoqOjMWDAAHzzzTcYOHAgHnnkEYSGhsLV1RVXrlzBrl27YGNjIw299/X1BQDMmDEDL7zwAkxNTTFkyBA0atQIEyZMwIIFCzBhwgT4+fnh77//xunTpysVW0V16NABvXv3hq+vLxo3bozDhw9jw4YNmDJlSo3cj0g2cg/XIqKylTVD8YPKmqG4LBkZGSIsLEy0adNGKJVKYWdnJ4KDgys0/Ds+Pl4AEO+9916ZdVJSUgQA8cYbb0hla9euFV5eXkKpVApvb2+xadMm8eyzzwovL69S53/99dfC19dXWFhYCGtra9GxY0fx9ttvi6tXr0p13N3ddQ5rDgoKEkFBQVply5cvF61atRLGxsYPHRZe1gzFQgiRnZ0tbG1tta5/5MgR8cwzz4gmTZoIpVIp3N3dxfPPPy9iYmK0zp07d65wdXUVRkZGWsPC79y5I8aPHy9sbW2FtbW1eP7550VGRkaZQ8F1xVXRn8W8efOEv7+/sLOzExYWFsLLy0u8//77Ij8/v8yfB1F9pBBCDz3viIiqwMfHB46Ojpwhl4j0in1uiKjGFRQUoLCwUKts9+7dOHr0KHr37i1PUERksNhyQ0Q1LiUlBcHBwXjppZfQrFkznDp1CsuWLYOtrS2SkpIeuowEEVFlsEMxEdU4e3t7+Pr64ptvvkFmZiYaNWqEwYMHY8GCBUxsiEjv2HJDREREBoV9boiIiMigMLkhIiIig9Lg+txoNBpcvXoV1tbWepmWnYiIiGqeEAI5OTlo1qyZzoWDS2pwyc3Vq1fLnFWViIiI6rZLly6hefPm5dZpcMmNtbU1gPs/HBsbG5mjISIioopQqVRwc3OTvsfL0+CSm6JXUTY2NkxuiIiI6pmKdClhh2IiIiIyKExuiIiIyKAwuSEiIiKDwuSGiIiIDAqTGyIiIjIoTG6IiIjIoDC5ISIiIoPC5IaIiIgMCpMbIiIiMihMboiIiMigMLkhIiIig8LkhoiIiAwKkxsiIiIq170CtdwhVEqDWxWciIiIKu73xCuYujYRnZvb4ujlbADAV6N8EfKIi8yRlY0tN0RERFSmqWsTAUBKbADglR/iIYSQKaKHY3JDRERElZamuid3CGVickNERERlaunQSGd5YNTOWo6k4pjcEBERkU7Zdwtw4XouAGDt/3XHoRnBMkdUMUxuiIiIqBQhBEJXxgG433rTvVUTOForteqcSlPJEdpDMbkhIiKiUmLP30BCahYAYKB38cioxS92kbZz8+rmEHEmN0RERFTKiavFrTLTQjyl7Sc6NZO2C9WaWo2popjcEBERkZajl7Iwb/NJAEDII85QKBQ66w3/+gCy7uTXZmgVwuSGiIiIJFl38jF0yT/S/qjuHuXW95mzHXmFdev1FJMbIiIiA5SRcw/Dv4rFhvjLlTov5mSGtD32UQ881tbhoecM/nwfhBA4fjUb6ap7sk/wpxByR1DLVCoVbG1tkZ2dDRsbG7nDISIiqhHPL4tFXMpNAMCFqEG4V6CBgIClWemVl06lqfB97EWM6+GB4E/+BgC42lngn/C+Oq+95mAq3v31WJn3drZR4uC7+h02Xpnvb64tRUREZICKEhsA+PXIFYT9fBTW5iY4NCMY5qbGWnVHfxuHjJw8rDmYKpW90b9dmdd+MaAF8grVmP3HCZ3H01V51Yy+evhaioiIyMBoNNovZcJ+PgoAyLlXiIwSicfB8zfgEb4ZGTnayUgrx0Z4tqtrufd4qbt7mccGd2pa2ZD1iskNERGRgbl0606Zx77YeUbaHv71gVLHFw33wc43e5c5QqqIqbER3n/au1R5h6Y2WDyii44zag9fSxERERmQE1dVGPT53jKPr4+/jEEdmyLpSrZWuZmJEU7MDoGJccXbPUYGuOPg+ZvYdPQqAGDuU9540b/FQxOjmsYOxURERAYi+04BOs/5q9LnrQztht7tHKuUlAghEJ2UhnYu1mjtaFXp8yuqMt/ffC1FRERkIGb+nqS1H/NmUIXO6+PpVOXWFoVCgYEdm9ZoYlNZTG6IiIgMRHTSNWn7QtQgtHa0QtyMfnBvYomXe7aEn7t9qXNKrhVlKNjnhoiIyEAUqO/3NJk5uL3UEuNkbY490/r8d1yDtjO2AgCiX+8JS1MTtGhiKU+wNYjJDRERkQFQlxj+/WTnZjrrmBobIWXB4NoKSTZ8LUVERFSHFag1UN0reGi97/anSNv2jcxqMKK6r04kN0uWLIGHhwfMzc0REBCAuLi4Muv27n1/7P2Dn8GDDT8TJSKihqftjK3oNOsvHCox47AuH/2VLG2bVmI4tyGS/enXrVuHsLAwREZGIiEhAZ07d0ZISAgyMjJ01t+4cSOuXbsmfZKSkmBsbIxhw4bVcuREREQ1I/tOAQrVGkxde0QqG7YsFoVqjc76xy5n407+/ZW5FzzTsVZirMtkn+cmICAA3bp1w+LFiwEAGo0Gbm5uePXVVxEeHv7Q8xctWoSIiAhcu3YNjRo1emh9znNDRER1jUYj8Pq6RGTdLYB7Y0v8cOBimXWn9GkDWwtTtHG2Qh9PJ9y4nQffeTuk48nzBkBpYlzm+fVVvVk4Mz8/H/Hx8Zg+fbpUZmRkhODgYMTGxlboGt9++y1eeOGFMhObvLw85OUVr5mhUqmqFzQREZGe7T6dIc3y+zCLd52Vtp/s3EzrvFeCWhlkYlNZsr6Wun79OtRqNZydnbXKnZ2dkZaW9tDz4+LikJSUhAkTJpRZJyoqCra2ttLHzc2t2nETERHpU3La7SqdVzKxebqLK6YPbK+vkOo12fvcVMe3336Ljh07wt/fv8w606dPR3Z2tvS5dOlSLUZIREQNxb+Xs+ARvhk9P9yJzAdW2S6PRiOwJk73ayh7S1Ocmz8I29/oVe41bMxN8MnznSsVryGT9bWUg4MDjI2NkZ6erlWenp4OFxeXcs/Nzc3F2rVrMWfOnHLrKZVKKJXKasdKRERUlu/2pyBy03EAwKWbd/Hy94fxbFdXPNnZFbaWpuWeeyXrLi7dvAsAGOHvBkABVztzHEq5ha9G+cLYSIG2ztY4NXcAvN6LLnV+IzNj/DsrRO/PVJ/JmtyYmZnB19cXMTExeOqppwDc71AcExODKVOmlHvu+vXrkZeXh5deeqkWIiUiItLtXoFaSmyKJF7KQuKlLMScysCq0LLfLgDAC18fkLajnulUZj1zU2Nsf6MXthxLw6c7Tkvlx+cMqGLkhkv2GYrDwsIwZswY+Pn5wd/fH4sWLUJubi5CQ0MBAKNHj4arqyuioqK0zvv222/x1FNPoUmTJnKETUREBAA4eKHs+Wd2J2ei5fTNeKJTM3wxovQaTmHrEnEl636rTV8vp4feq62zNaY6W+OVoFZYvPMsQh4p/y1HQyV7cjN8+HBkZmYiIiICaWlp8PHxQXR0tNTJODU1FUZG2l2DkpOTsW/fPvz1V+WXdSciItKnE1eLR+EemhGMbu/v0DouBPDH0av45PnO0uR6+YUahP/yLzYeuSLVW/aSb4XvaW5qjLdCPKsZueGSPbkBgClTppT5Gmr37t2lyjw9PSHz9DxERFTPqe4VYP/Z65j4YwKA+6tjP9FJ95pM5dl+4v7o3kdbN4GjtRIzBrXH+1tOlqr3x9GreKZrcwBAu5lbtY4979ccZib1eoxPnSL7JH61jZP4ERFRyQ7AJVVlUUmP8M0AgOd8m+OjYZ1LlT9ohH8L/BSXKu0fjXj8oZ2OqXLf30wTiYiowTibkYPJaxJ0JjYAkKG6h3sFahx+yDpORaZvPCZtjwn00Drm5WKt85ySic35+YOY2NSAOvFaioiIqKYdvZSFoUv+KbdOv4/3ICevEAAw/rGWeO+JDmXW3X4iXStR8XbVbk34dLgPBn62t8zz33/aG0ZGioqETpXElhsiIjJ4J6+pdCY2NuYm+Ce8r7RflNgAwLf7Lui81u28Qggh8HticWfgV/u2gUKhnai0b2qDTVN6YNOUHjqvMzLAvVLPQBXHlhsiIjJ4ZbWgVGbyu1NpKgxYVPo6XVvY4c3HdY9c6tTcDgCwI6wXDqXckl5jffhs2fPZUPUxuSEiIoNWqNZo7U94rCVMjI3wat82Utn0gV6I2nqq1LlLd5+Do7USH/+VjGvZ93Ref2kFhnC3cbJGGydrDPR2wdWse+jQjANaahJHSxERUZ13Lfsu7C3NYG5aesVrIQSy7hQg9vwNhDziAuMS/Vju5Bdi7MpDiPtvor0Pn+2E57uVXkBZrRFo/e6WSse1+63e8HBoVOnzqPIq8/3NlhsiIqrTkq5k44kv9gEATswJgaWZ9lfXjN+SsOZgccfeouHcj0bF4OoDrS3P+jbXeQ9jIwWOvNcf20+ko2c7BwRG7dRZb8VYP/wQexFHL2cjdnpfKE1KJ1skP3YoJiKiOq0osQGALcfSSh0vmdgA9+eX2XUqo1Ri82JAC61WnQfZNzLD893c0NTWAs89kARZK02w5uUA9PVyxspQfyS815+JTR3G5IaIiOq0kglJ0pVsrWMXrufqPCd01aFSZRHlDOt+0MLnOmHNywEAgA5NbXBsdggebe1Q4fNJXkxuiIioTlNriruGrtqfgoISHYQX7zxboWuM8HfT2V+nLAqFAo+2dsDJOQOw+bXHKh4s1Qnsc0NE1MCp7hWg5we74N7EEhsmPlojaxwVqDWY88cJBLRqXKH1m/69nIVFO87gqS6upY61nbEVF6IGQaFQ4HR6DgBAobi/QOWDqtvh18KMr57qI46WIiKqZ4QQWLTjDMxNjTGpd2sAgEYjcCbjNto6WVV61tvpG//FT3GXAACDOrrgy5EVX526LAVqjbQC9qGUmxi2LLZUnRH+bggf2B6jvz2IIZ2bYULPVgCAHSfSMeH7w+Vev52zFX6Z9Cg6zvoLwP2Ovl1b2KPL3O1SknN4ZjAcrJTVfhaqGzhaiojIgHWe/RdU9+7PpHu3QI2w/u3QqsQw5sou/lg0TBrQ3WG3PHfyC9EhYluZx5vZmpfq2Fvkp7hL2HEyA5k5eTh6ORsTerZChuqezsSmfVMbnLymkvZPp9/Gx3+dlvb7eDpBoVDgQlTlF74kw8M+N0RE9UxRYgMAn8ecwawHFoFcG5f64CnlOpep3Sn35e8PI/FSVoXO/frv8+UeLyuxKZKZkydtv/bTEfzfD/Gl6rRobInvQrtprbgN3O9/U+TBpQ+oYWPLDRFRPVKyc22Rkl/yABC+8RiGd3Or0Bf+/nPXS5VtP5GO7SfSAQA/jPdHz7aOWsczc/JgZmwEW0tTLN19rsKxF81RU9YClpuOXi1V9tbj7TClb1sAwHO+zVGo1iC8xErcwP2RTUQlMbkhIqpH5m85WaF6eYWaCo0OWn/4crnHR30bhwtRg/D2hn+xPl677oqxfsgr1JRxpraZg9tLk+91drPDmgkBePGbg2XWL6u/zPBublrJzVCfZqXmpCFih2IionqiZEdbb1cbuNpZYNvxdJ11fdzs8Ntk3atRF1m25xwW/Lee0qt92yDxUhb2nindklMRr/Ztg8c7uOBUmgrf7L2A5P9GMZmbGmHzaz3RyqFRqZYkj/DNAO7PPzPnzxNS+bynvPFS97JXzBZCIPbcDbR0bISmthZVipfqn8p8fzO5ISKq427m5iPow13IySvua7Prrd5o6dBIShCiX+8JT2drtJxe3LE44b3+aNzITOc1P9l+Gp/HnJH2D0zvB2cbJQ6cv4kRyw9UKr5nuzbHx89r94cpVGuQV6hBI2XZLwj+OHoV2XcL8FJ3d1y+dQf/nL2OQR2bwtrctFL3p4aByU05mNwQUX2zaMdpLNpxRqusaERUoVqDArWQ5mMpSnaKFM0HU9Lu5AyMXVk8g+934/wR1K64X40QAmqNQJsZWysUn657EOlbZb6/OVqKiKgOOnD+BjzCN8MjfLNWYvN4B2ckzxsg7ZsYG2lNNPfNaD+t69zJV2vtX826q5XYrAztppXYAPdHHpkYG2FVaDet8kdbN8HpeQO1yuY+5c3EhuocJjdERHVQ1H99YUoa7ueGr0f7lbtgY7/2Tlr7p9JytPZLdkjeH94XfTy165fU29MJkUOK12P6dkw3mJkYYdlLvmjnbIWk2SEYVU7fGCK58LUUEVEdsis5A6ErSy/6CFR8cr4CtQZtS7xSinu3H5QmxkhT3UPIor8BAI80s8Hm13pWP2CiWsIZiomI6hmNRiDlRm6ZiY2Xi3WFr1W07EER//kxAIBnuhav0/Tr/8ofSUVUnzG5ISLSo9PpObiZm4/urZpU+JxJP8Zja1L5yx58ObJrpeJwsFLi+u08rbKNCVcAAL3aOdbI4phEdQWTGyIiPRr8+V4UqAW2vd4LnjpaW5LTcjB17REEtm6CyCGPIDMnr8zE5sh7/aFQ3B8K3srRqlJxhPVvh3d/Pabz2KcPDNsmMjRMboiI9OR2XiEK1Pe7Mf6WeAXvDPAqVef5r2KRfbcAp9JysPKflDKvVbJ/jZ2l7rlqyvOcb3Odyc3oQHc04UrZZODYLklEpCclJ8Vbuvsc7uQXT7p3N1+N23mFyL5b8NDrnJs/qNqxmJkY4dTcATj7vvbQ7WkhntW+NlFdx5YbIiI9WfVAS0yHiG0AABMjBQp1LHhZ0nfj/OFgZQYzYyMYG+ln3piitaUSI/rDZ852AODsv9QgMLkhItKTfLXuRSQflthMH+hVaiI9fbKzNMO/sx6HmTEb66lhYHJDRKQH8RdvVbju2v/rjkZmJhj21X6M69ESrwS1rsHI7rNhiw01IExuiIiqSaMReHbpfml/5dhumPhjPPIKS7fkbH+jF9o63x9FdWL2ABjp6RUUERVjckNEVE2ZD8wn08fLCcnzBuLijVwELdwNADg8MxgOD4xSYmJDVDNkfwG7ZMkSeHh4wNzcHAEBAYiLiyu3flZWFiZPnoymTZtCqVSiXbt22LJlSy1FS0RU2ofRydJ2YkR/adu9SSNsndoTh2aUTmyIqObI2nKzbt06hIWFYdmyZQgICMCiRYsQEhKC5ORkODmVXswtPz8f/fv3h5OTEzZs2ABXV1dcvHgRdnZ2tR88ERGAdNU9/JJwWdp/cE6a9k25hh1RbZN14cyAgAB069YNixcvBgBoNBq4ubnh1VdfRXh4eKn6y5Ytw8KFC3Hq1CmYmlatcxwXziQifdBoBJ5euh9HL2VJZdGv94SXC/+uENWEynx/y/ZaKj8/H/Hx8QgODi4OxsgIwcHBiI2N1XnOpk2bEBgYiMmTJ8PZ2Rne3t6YP38+1Gp1mffJy8uDSqXS+hARVUda9j20eneLVmLz8bDOTGyI6gjZkpvr169DrVbD2dlZq9zZ2RlpabrXWTl//jw2bNgAtVqNLVu24L333sPHH3+MefPmlXmfqKgo2NraSh83Nze9PgcRNSxqjUD3qBitssBWTfCsb3OZIiKiB9Wr0VIajQZOTk74+uuvYWxsDF9fX1y5cgULFy5EZGSkznOmT5+OsLAwaV+lUjHBIWqgNBpRrRFKd/ILpVmHi+wI64U2TqUXyCQi+ciW3Dg4OMDY2Bjp6ela5enp6XBxcdF5TtOmTWFqagpjY2OprH379khLS0N+fj7MzEovLqdUKqFUcpQCUUP33f4URG46DgDY+WZQpVfZBoCnl+zX2l8V2o2JDVEdJNtrKTMzM/j6+iImprh5V6PRICYmBoGBgTrP6dGjB86ePQuNpnhirNOnT6Np06Y6ExsiIgAQQkiJDQD0/XhPpa9xN1+N5PQcaf9C1CD09iw9qpOI5CfrPDdhYWFYvnw5vvvuO5w8eRKTJk1Cbm4uQkNDAQCjR4/G9OnTpfqTJk3CzZs3MXXqVJw+fRqbN2/G/PnzMXnyZLkegYjqgdSbd6p9jaSr2dL22fcHQqHgBHxEdZWsfW6GDx+OzMxMREREIC0tDT4+PoiOjpY6GaempsLIqDj/cnNzw7Zt2/DGG2+gU6dOcHV1xdSpU/HOO+/I9QhEVA+s2HehVNn7m09gxuAOFb7GiavFIy1NuAAlUZ0m6zw3cuA8N0QNT/Ane3A243ap8lWh3RDUzrFCrTBT1x7B74lX4edujw2THq2JMImoHPVinhsiotqQeuOOlNh8PqKL1rGxKw+h5fQt8AjfjOS0HF2nS35PvAoAcLTmAAWiuo7JDREZtG/2nZe2n+jYFPOe8tZZL2TR31BrBEZ9exAr/9F+jfV9bIq0/ebj7WokTiLSn3o1zw0RUWXczVfj+9iLAIBnuzaHkZECL3V3x/GrKvwUl1qqfpc5f0F1rxB7z1xHXqEGC7ae0jre29ORQ7+J6gG23BCRwfrrRPFs51P7tZW2o57pqLO+6l6htP1gYgMAy17y1WN0RFRT2HJDRAZr6tpEAEAjM2O0aGKpdezU3AHYeSoD3Vs1Qde52x96rb1v94G5qfFD6xGR/NhyQ0QGKe7CTWk7tEfLUsfNTY0xqGNTNG5khvZNHz5y0q2x5UPrEFHdwOSGiAxS2M+J0vbDOgFvndoTn73gU+bxP199TE9REVFt4GspIjIIQghMWXMEl7PuopVDI1y+dRcAMLlP6wrNYzPUxxVDOjWDQgFsiL+MXu0c4WxjjgK1BqactI+oXmFyQ0QG4Z+zN7D52DUAwNFLWVL5yz1bVfgaRSuGD/Nzk8qY2BDVP/yvlojqvPxCDe7kF5Z5XAiBOX8eL1Ue9UxH2FlyUV2ihobJDRHVKiEEXvg6Fqv+Kb3eU1n1283cig4R2xB77obOOqfScnA6XXt5hdAeHhjh36La8RJR/cPXUkRUq1pO3wIAOHD+Jp7xbQ4bc9Ny6x8p8YppxPIDODd/EIyNtPvQFM0o3LiRGRLe66/fgImo3mHLDRHVisycPHSfH6NV1mnWX/AI34yy1u89labCM1/u1ypr/e4WrX0hBBJSswAAFpyHhojA5IaIasHJayp0e38H0lT3dB4fu/JQqbKdp9IxYNFenfUL1Rpp+8nF/0gLY04MqnjnYSIyXExuiKjGfbn7XLnH95zO1Jp0DwDGrTpcZv3Pd55FcloOPMI349iVbKm8j5dT9QIlIoPA5IaIalw7Jyut/Z5tHUrVef6r2DLPH9K5GQ6+20/a33rsGkIW/a1VJ25GPzS35yzCRMTkhoj07PrtPBw8XzyqSaMRWLk/RdrfM603Fj7XudxrqDXFfXBc7Szw+Qs+cLYxl8rOZGiPjDoa+TicrM1BRARwtBQR6cGt3Hx0eWDxyVlDOmDMox4Y/MU+3MzNBwA83cUV7k0aAQDOzx+EAo0GnjOjpXO+2nMOrwS1xpJdZ6Wyv9/uU+4Mw7pGTxFRw8aWGyKqlos3ckslNgAw648T2H/uBk5eU0ll00I8pW0jIwWUJsaInd5XKovaegonr6nwyfbTUlnJxCW4fek+NUxsiOhBTG6IqFomr0ko89jIbw5K29Gv90QzO4tSdRytlFr7Az8rHiHV2c1O69jy0X5a+/4tG1cmVCJqIJjcEFGVHU65iaQrqofW6+PpCC8XG53HTIyN8MGzHXUeWzW2m9a+QqHAK73uD/ce6O2Cn17uXsmIiaghUIiyZs8yUCqVCra2tsjOzoaNje4/tkT0cD5z/kLWnQJpv6mtORo3MsPxq6WTnZNzBsDCrPwJ9jzCN5cqS1kwuPqBEpFBqMz3NzsUE1Glqe4VaCU2ABA7vXiodmZOHvafu45LN+/g/3q1hpnJwxuJA1o2xsESc918PKz8EVVERGXhaykiqrRT13K09g/NCNbad7RWYqiPK6b0bVuhxAYAvhvnr7X/rG/z6gVJRA0WW26IqFK2HruGSauLOxGfnz8IRnoYsWRuaszXUESkF2y5IaJKKZnY+Hs01ktiQ0SkT0xuiKjCxq6M09pfPLKLTJEQEZWNr6WIqELe2fAvdidnSvv/znocNuamMkZERKQbW26I6KH2n7uOdYcvSftLR3ZlYkNEdRZbbojooV5cXjzT8P7wvjpnGiYiqivYckPUABxJvYW5f55AWva9Sp0nhMDEH+Kl/RH+bkxsiKjOY8sNUQPw9Jf7AQD5hRrMfcq7QudoNAKt3t2iVTb/ad3LJBAR1SVsuSEycPmFGml73aFL5dTU9l1sitb+0cjHoVBw2DcR1X1MbogM3Cs/HJa289UaTF175KHnaDQCn/x1Wto/NXcAbC3YgZiI6oc6kdwsWbIEHh4eMDc3R0BAAOLi4sqsu2rVKigUCq2Publ5LUZLVL/sKjF8GwB+T7wKj/DN8AjfjLLWzV204zRy8goBAHvf7gNz0/IXvSQiqktkT27WrVuHsLAwREZGIiEhAZ07d0ZISAgyMjLKPMfGxgbXrl2TPhcvXqzFiIkMh64VvAHg851nAQAmRgq4NbaszZCIiKpN9uTmk08+wcsvv4zQ0FB06NABy5Ytg6WlJVasWFHmOQqFAi4uLtLH2dm5FiMmqj/OZd6Wtkf4u5U6/sQX+0qVlRxRtX5iYM0ERkRUg2RNbvLz8xEfH4/g4OIVhY2MjBAcHIzY2Ngyz7t9+zbc3d3h5uaGoUOH4vjx42XWzcvLg0ql0voQNRTbjqdJ21HPdNJZJ69QrbXfPSpG2vZxs6uRuIiIapKsyc3169ehVqtLtbw4OzsjLS1N5zmenp5YsWIFfv/9d/z444/QaDR49NFHcfnyZZ31o6KiYGtrK33c3Er/3yuRofowOhkA0LiRGQBg91u9S9VJupItbR9KuSltt2hsydFRRFQvyf5aqrICAwMxevRo+Pj4ICgoCBs3boSjoyO++uornfWnT5+O7Oxs6XPpUsWHwhIZitaOjQAAHg6NkLJgME7OGSAde3ZpLK5m3QUADFtW3GK6IyyodoMkItITWSfxc3BwgLGxMdLT07XK09PT4eLiUqFrmJqaokuXLjh79qzO40qlEkqlstqxEtUnh1Ju4rMdZ6T9T4f7aB23MNMe/fTv5Szk3CuU9neEBcHMpN79vw8REQCZW27MzMzg6+uLmJjid/wajQYxMTEIDKxYR0a1Wo1jx46hadOmNRUmUY0oVGtwOOUmbucVljkkuypu5xVi2LJY7Dt7XSprbl96xJNHk+KyiT8mYPGu4v9BaONkpbd4iIhqm+zLL4SFhWHMmDHw8/ODv78/Fi1ahNzcXISGhgIARo8eDVdXV0RFRQEA5syZg+7du6NNmzbIysrCwoULcfHiRUyYMEHOxyCqNM/3oqHWFCc1Pds64IfxAdW+7qfbT2vtO9vobrnc9VZvtJxevLzCH0ev3o/L2braMRARyUn25Gb48OHIzMxEREQE0tLS4OPjg+joaKmTcWpqKoyMihuYbt26hZdffhlpaWmwt7eHr68v9u/fjw4dOsj1CEQV8sa6ROw7ex1fjOiCwyk3tRIbANh75jpe/ekIvhjRBTdz82FvaVrpDr0ZOffw7b4L0v5bj7fDpN5tdNYt69rhA70qdU8iorpGIfTZHl4PqFQq2NraIjs7GzY2NnKHQw3A7bxCeEduq3D9D5/thLd/+RcAsHVqT7RvWvF/px7hm6XtE3NCYGlW/v+/zNp0HKv2p2iVnZ8/CEZGHCVFRHVLZb6/ZW+5ITJ0Y1aUvZyILkWJDQAM/Gwvzrw/EKbGD+8ed7jEMO5e7RwfmtgAwIzB7eHtaosmjczQzM4CrRwbMbEhonqPwyGIakD2nQK8uPwAPMI3I/7irTLrPdPVFSkLBuPjYZ3LrBPxe1KF7vnXieJRh1+P8q3QOabGRnjOtzn6eDnB08W6QkkUEVFdx5YbohrQec5fpcreHuApTar3YOfhZ32b49iV7FKviADgp7hLmBTUBi1KjG7SaASOXcnGv1ey4dHEEt/HXsT2/5Kbnm0duNAlETVoTG6I9GzXqdKLvg7zbY7/9W6D85m5OHD+Br4Z41eqzqwnH0Fg6ya4k1+Itk7WWus+9Vq4CykLBkv7n2w/rTV0u6Sgdo56eAoiovqLyQ2RnoWuOqS1H9zeGQv/e+30UTmvnwAg5JHiySvHBLrju9jiFe/v5quxPv4SIn4vey01ABj/WMvKhkxEZFCY3BDVoJKtLZX13hMdtJKb19YekV496eJiY4794X25HhQRNXjsPUhUQ6o7X4yJsRHOvj9Q2i8vsTkxJwQH3u3HkU5ERGDLDZFeXbp5R9p+tmvzal/PpJzRSw5WSjzRqSnCB3qxAzERUQlMboj06JMSSx84Wutnwdbdb/VG7492S/tdW9hh4/966OXaRESGiMkNUTWpNQLL9pzDwm3JUlmn5rZ6u76HQyOt/UEduUgsEVF52OeGqJo+23FaK7EBgO9C/fV6j/4dnKXt4d3c9HptIiJDw+SGqBpOXFXh852l55uxb2Sm1/s80am4tcba3FSv1yYiMjR8LUVURUIIPLt0v1bZ+omB8G1hr/d7DenUDBoh4OOm/2sTERkaJjdEVfThtmTcLVBL+4dnBsPBSj+diB9kZKTA012qP/qKiKghYHJDVAX5hRos3X1O2q/OZH1ERKRf7HNDVAV/nUiTtrdO7SljJERE9CAmN0SVdK9AjSlrjkj77ZvayBgNERE9iMkNUSWduKaStj98rpOMkRARkS5Mbogq6a/jxWs8Pe/HOWeIiOoaJjdElbRsz/2OxB1d9TcLMRER6Q+TG6JKuJ1XKG23dbKSMRIiIioLh4ITVdDCbaewZFfx8O+JvVvLGA0REZWFLTdEOhSoNfAI3wyP8M3YmHAZGo3QSmwAoJ2ztUzRERFReZjcEOnw0jcHpe2wn4+i1btbtI4P7sSVuYmI6iomN0Q6HLxws9zj4QO8aikSIiKqLPa5ISohLfse1h26VObx3p6O+OR5HzTW86rfRESkP0xuqMG5mnUXxkYKONuYa5XP/uM4Vv6TUu65q0L9azAyIiLSByY31KCkZd/Dowt2AgA2TemBTs3tcCjlJoYti9VZ/+ScAcjNL8SxK9no1daxNkMlIqIqqlJyk5ubiwULFiAmJgYZGRnQaDRax8+fP6+X4Ij0bcyKOGn7ycX/oKmtOa5l39NZ948pj8HCzBgWZsbo4+lUWyESEVE1VSm5mTBhAvbs2YNRo0ahadOmUCgU+o6LqEYkp+do7ZeV2Lz3RAd0bM4ZiImI6qMqJTdbt27F5s2b0aNHD33HQ1RjDqWUPwIKAPa+3QdujS1rIRoiIqopVUpu7O3t0bhxY33HQlRj8grVWv1q7C1NcetOgbTf18sJT3RqysSGiMgAVGmem7lz5yIiIgJ37tzRdzxENcJv7g5pe1BHFxyJeFxr4csVY7vhma7N5QiNiIj0rErJzccff4xt27bB2dkZHTt2RNeuXbU+lbVkyRJ4eHjA3NwcAQEBiIuLe/hJANauXQuFQoGnnnqq0vckw3KvQI1V/1zAxRu5pY5dybqLnBILXj77XxKzaUoPTAxqjZVju9VanEREVPOq9FpKn8nEunXrEBYWhmXLliEgIACLFi1CSEgIkpOT4eRU9giVlJQUvPXWW+jZs6feYqH66831R7H532uY9ccJXIgaBLVGwMTYCEIIvPB18euoHWFBaPPfat4KhQLhAznTMBGRoal0clNYWAiFQoFx48ahefPqN+N/8sknePnllxEaGgoAWLZsGTZv3owVK1YgPDxc5zlqtRojR47E7NmzsXfvXmRlZVU7DqqfVh+8iBm/JmmVtZy+RWfdsY96SIkNEREZrkq/ljIxMcHChQtRWFj48MoPkZ+fj/j4eAQHBxcHZGSE4OBgxMbqnlQNAObMmQMnJyeMHz/+offIy8uDSqXS+pBhyMzJK5XYlOeN/u1qMBoiIqorqvRaqm/fvtizZw88PDyqdfPr169DrVbD2dlZq9zZ2RmnTp3Sec6+ffvw7bffIjExsUL3iIqKwuzZs6sVJ9VNX+4+W6F6B6b3g6O1EsZGnI+JiKghqFJyM3DgQISHh+PYsWPw9fVFo0aNtI4/+eSTegnuQTk5ORg1ahSWL18OBweHCp0zffp0hIWFSfsqlQpubm41Eh/VHrVGlFrgcv7THfHur8ek/W4e9vhxQgCUJsa1HR4REcmoSsnN//73PwD3+8s8SKFQQK1WV+g6Dg4OMDY2Rnp6ulZ5eno6XFxcStU/d+4cUlJSMGTIEKmsaOkHExMTJCcno3Xr1lrnKJVKKJXKCsVD9UfipSzcyb//76xojSgAUnLz3Th/BLXjWlBERA1RlZKbB9eSqiozMzP4+voiJiZGGoGl0WgQExODKVOmlKrv5eWFY8eOaZXNnDkTOTk5+Oyzz9gi04B8s7d4/bKixAa4/woq5UYuurdqIkNURERUF8i+KnhYWBjGjBkDPz8/+Pv7Y9GiRcjNzZVGT40ePRqurq6IioqCubk5vL29tc63s7MDgFLlZNgSUm8BKJ6zpoiLrTlcbM3lCImIiOqIKiU3c+bMKfd4REREha81fPhwZGZmIiIiAmlpafDx8UF0dLTUyTg1NRVGRlWaa5AMkEYjsOKfC0hX5QEA3nycI6CIiEibQgghKntSly5dtPYLCgpw4cIFmJiYoHXr1khISNBbgPqmUqlga2uL7Oxs2NjYyB0OVZBaI/DtvvNYuvuc1ppQKQsGyxgVERHVlsp8f1ep5ebIkSM6bzp27Fg8/fTTVbkkUbm6vb8DN3PzpX0LU2P8MulRGSMiIqK6Sm99bmxsbDB79mwMGTIEo0aN0tdlqYG7k1+ID6OTpcSmtWMjrP2/QDhacwQcERHpptcOxdnZ2cjOztbnJakBy80rxGMf7NR6DbUjLAgKBSfjIyKislUpufn888+19oUQuHbtGn744QcMHDhQL4FRwxZ34Sae/6p4CY6+Xk6YM/QRJjZERPRQVUpuPv30U619IyMjODo6YsyYMZg+fbpeAqOG7e0NR6XtdwZ4YVLv1uXUJiIiKlal5ObChQv6joMIAJBfqMHgz/ci5cYdAMD6iYHo5tFY5qiIiKg+qdIEMuPGjUNOTk6p8tzcXIwbN67aQVHDFTB/B85k3AYA9O/gzMSGiIgqrUrJzXfffYe7d++WKr979y6+//77agdFDdM3e89LnYf7ejnh61G+MkdERET1UaVeS6lUKgghIIRATk4OzM2Lp7lXq9XYsmULnJyc9B4kGb631h/FhvjLAIBGZsZYMbabzBEREVF9Vankxs7ODgqFAgqFAu3alZ72XqFQYPbs2XoLjgyfRiPw1d/npcQGAPa+01fGiIiIqL6rVHKza9cuCCHQt29f/PLLL2jcuLg/hJmZGdzd3dGsWTO9B0mGa/x3h7ArOVPaPzEnBJZmsq/nSkRE9VilvkWCgoIA3B8t1aJFC845QtUihNBKbFaO7cbEhoiIqq1KHYrd3d2xb98+vPTSS3j00Udx5coVAMAPP/yAffv26TVAMjxCCHwQfQotp2+Ryk7NHYA+XuyvRURE1Vel5OaXX35BSEgILCwskJCQgLy8PAD3l1+YP3++XgMkw/PXiXQs3X1Oq8zc1FimaIiIyNBUKbmZN28eli1bhuXLl8PU1FQq79GjBxISEvQWHBmmqC0npe3xj7XEufmDZIyGiIgMTZU6OCQnJ6NXr16lym1tbZGVlVXdmMiA3crNl2Yf7uPpiPee6CBzREREZGiq1HLj4uKCs2fPlirft28fWrVqVe2gyHDN+O2YtD3/mY4yRkJERIaqSsnNyy+/jKlTp+LgwYNQKBS4evUqVq9ejTfffBOTJk3Sd4xkIE5cVWHLsTQAgI25CZraWsgcERERGaIqvZYKDw+HRqNBv379cOfOHfTq1QtKpRLTpk3DhAkT9B0jGYATV1UY9PleaZ8T9RERUU2pUsuNQqHAjBkzcPPmTSQlJeHAgQPIzMyEra0tWrZsqe8YqR4rUGswa9NxrcRm82uPwdbCtJyziIiIqq5SyU1eXh6mT58OPz8/9OjRA1u2bEGHDh1w/PhxeHp64rPPPsMbb7xRU7FSPfTFzrNYtT9F2v+/Xq3wSDNb+QIiIiKDV6nXUhEREfjqq68QHByM/fv3Y9iwYQgNDcWBAwfw8ccfY9iwYTA25nwlVOzzmDPSduz0vuxnQ0RENa5Syc369evx/fff48knn0RSUhI6deqEwsJCHD16lEsxkBYhBF5bmyjtrwztxsSGiIhqRaVeS12+fBm+vr4AAG9vbyiVSrzxxhtMbKiU/edu4I+jVwEA/i0bI6ito8wRERFRQ1Gplhu1Wg0zM7Pik01MYGVlpfegqH47eikLI785CACwMDXGz68EyhwRERE1JJVKboQQGDt2LJRKJQDg3r17mDhxIho1aqRVb+PGjfqLkOoVIQSGLvlH2ucMxEREVNsqldyMGTNGa/+ll17SazBUvwkhsGhHcQfiXyYFwte9sYwRERFRQ1Sp5GblypU1FQcZgE+3n8bnO4uX5WBiQ0REcqjSJH5ED0pIvaWV2Ox9u4+M0RARUUNWpeUXiEpKvXEHz3y5X9o/+G4/ONuYyxgRERE1ZGy5oWob+e0BafvnVwKZ2BARkayY3FC1XMm6i0s37wIAXglqBf+W7GdDRETy4mspqrLUG3fw1JfFw77fDvGSMRoiIqL76kTLzZIlS+Dh4QFzc3MEBAQgLi6uzLobN26En58f7Ozs0KhRI/j4+OCHH36oxWgJAEZ9exC9Fu7Czdx8AMD7T3vD2IgzVRMRkfxkT27WrVuHsLAwREZGIiEhAZ07d0ZISAgyMjJ01m/cuDFmzJiB2NhY/PvvvwgNDUVoaCi2bdtWy5E3XKp7Bdh75rq0/+nwzhgZ4C5jRERERMUUQgghZwABAQHo1q0bFi9eDADQaDRwc3PDq6++ivDw8Apdo2vXrhg8eDDmzp370LoqlQq2trbIzs6GjY1NtWJviE5cVWHQ53ul/QtRg7i2GBER1bjKfH/L2nKTn5+P+Ph4BAcHS2VGRkYIDg5GbGzsQ88XQiAmJgbJycno1atXTYZKAO4VqLUSm4gnOjCxISKiOkfWDsXXr1+HWq2Gs7OzVrmzszNOnTpV5nnZ2dlwdXVFXl4ejI2N8eWXX6J///466+bl5SEvL0/aV6lU+gm+gVn+93m8v+WktD936CMYFeghX0BERERlqJejpaytrZGYmIjbt28jJiYGYWFhaNWqFXr37l2qblRUFGbPnl37QRqQa9l3tRIbFxtzjPBvIWNEREREZZM1uXFwcICxsTHS09O1ytPT0+Hi4lLmeUZGRmjTpg0AwMfHBydPnkRUVJTO5Gb69OkICwuT9lUqFdzc3PTzAA1EydmH977dB26NLWWMhoiIqHyy9rkxMzODr68vYmJipDKNRoOYmBgEBgZW+DoajUbr1VNJSqUSNjY2Wh+qGCEEluw6i2vZ9wAAT3dxZWJDRER1nuyvpcLCwjBmzBj4+fnB398fixYtQm5uLkJDQwEAo0ePhqurK6KiogDcf83k5+eH1q1bIy8vD1u2bMEPP/yApUuXyvkYBmlD/GUs3JYs7X80rLOM0RAREVWM7MnN8OHDkZmZiYiICKSlpcHHxwfR0dFSJ+PU1FQYGRU3MOXm5uJ///sfLl++DAsLC3h5eeHHH3/E8OHD5XoEg5RfqMG0Df9K+79P7sFJ+oiIqF6QfZ6b2sZ5birm79OZGL3i/kzRayYE4NE2DjJHREREDVm9meeG6qY7+YV4Y12itM/EhoiI6hMmN1TKh9HJuPHfmlFT+7WVORoiIqLKkb3PDdUd6ap7GLMiDqfScqSyN/q3kzEiIiKiymNyQ5LgT/Yg516htP9PeF8ZoyEiIqoaJjcEALiZmy8lNvaWptgytSea2lrIHBUREVHlMbkhAMDUtUek7cMz+3PYNxER1VtMbhq46KQ0vLb2CPILNQCAEf5uTGyIiKheY3LTQAkh8NXf57Fga/Hq6w5WSsx7qqOMUREREVUfk5sGavHOs/h4+2lpf87QRzCquzsUCrbaEBFR/cbkpgHSaIRWYnNyzgBYmBnLGBEREZH+cBK/Bih01SFp+7tx/kxsiIjIoDC5aWDUGoE9pzMBAFZKEwS1c5Q5IiIiIv1ictPATPwxXto+Gvm4jJEQERHVDCY3DcjEH+Kx/UQ6AKCVQyMO+SYiIoPE5KaBOJOeg+jjadL+zrd6yxcMERFRDWJy00AcOH9D2j45Z4CMkRAREdUsJjcNxOGLtwAAxkYKjo4iIiKDxuSmAVBrBH5PvAoA6OPpJHM0RERENYvJjYETQqDNjC3S/sSgVjJGQ0REVPOY3Bi4T3ecgRD3t9s6WcHPo7G8AREREdUwJjcGTAiBz2POSPu/Te4hYzRERES1g2tLGajsuwVYuvuctL/t9V5opOSvm4iIDB+/7QxQoVqDXh/uQvbdAqnM08VaxoiIiIhqD19LGaCE1CwpsXG0VmLr1J4yR0RERFR72HJjgN77LUnaPjC9H5dZICKiBoXJjQE5cVWFQZ/vlfbnP92RiQ0RETU4fC1lIDQagcFf7NUqG+HvJlM0RERE8mFyYyCGfx0rzWejUABn3h8IhYKtNkRE1PAwuTEAk9ck4FDKLWn/9LyBMDXmr5aIiBomfgPWc6k37mDzv9ek/TPvM7EhIqKGjd+C9di9AjV6Ldwl7Qe3d2ZiQ0REDR6/CeuxUd8e1Np//2lvmSIhIiKqOzgUvJ46lHJT6mczMqAF3n+6o8wRERER1Q1suamnQlcekraZ2BARERWrE8nNkiVL4OHhAXNzcwQEBCAuLq7MusuXL0fPnj1hb28Pe3t7BAcHl1vfEC3ZdRa38woBABsmBsocDRERUd0ie3Kzbt06hIWFITIyEgkJCejcuTNCQkKQkZGhs/7u3bsxYsQI7Nq1C7GxsXBzc8Pjjz+OK1eu1HLk8ohOuoaF25KlfT+PxjJGQ0REVPcohCia+k0eAQEB6NatGxYvXgwA0Gg0cHNzw6uvvorw8PCHnq9Wq2Fvb4/Fixdj9OjRD62vUqlga2uL7Oxs2NjYVDv+2nT0UhaGLvlH2t/1Vm+0dGgkY0RERES1ozLf37K23OTn5yM+Ph7BwcFSmZGREYKDgxEbG1uha9y5cwcFBQVo3Fh3C0ZeXh5UKpXWp77ad/a6tH008nEmNkRERDrImtxcv34darUazs7OWuXOzs5IS0ur0DXeeecdNGvWTCtBKikqKgq2trbSx82t/q23JITAqz8dkV5HjevRErYWpjJHRUREVDfJ3uemOhYsWIC1a9fi119/hbm5uc4606dPR3Z2tvS5dOlSLUdZfUlXVPjj6FVpP6AV+9kQERGVRdZ5bhwcHGBsbIz09HSt8vT0dLi4uJR77kcffYQFCxZgx44d6NSpU5n1lEollEqlXuKVy5vrE6Xtg+/2g7ON7kSOiIiIZG65MTMzg6+vL2JiYqQyjUaDmJgYBAaWPcT5ww8/xNy5cxEdHQ0/P7/aCFU2YesScTr9NgAgtIcHExsiIqKHkH2G4rCwMIwZMwZ+fn7w9/fHokWLkJubi9DQUADA6NGj4erqiqioKADABx98gIiICKxZswYeHh5S3xwrKytYWVnJ9hw14Zu957HxSPEQ95mDO8gYDRERUf0ge3IzfPhwZGZmIiIiAmlpafDx8UF0dLTUyTg1NRVGRsUNTEuXLkV+fj6ee+45retERkZi1qxZtRl6jVu6+5y0vWlKDxgbKWSMhoiIqH6QfZ6b2lZf5rn58cBFzPwtCQDwy6RH4etuL3NERERE8qk389xQ2YoSGwDo2sJOvkCIiIjqGSY3dVD8xZvSdvumNlAo+DqKiIioopjc1EHvbz4pba/9v+4yRkJERFT/MLmpY86k5yAhNQsAMHNwe85ETEREVElMbuqQvEI1+n/6t7Tf29NJxmiIiIjqJ9mHghOwZNdZad2okto4Gda8PURERLWByY2MrmTdRVr2XZ2JTez0vjJEREREVP8xuZHJr0cu4411R0uVP9m5GSKHdEATq/q9HhYREZFcmNzIRFdiM+Gxlpj5BJdYICIiqg4mNzL4+u9zpcreCG6HqcFtZYiGiIjIsDC5qWXRSWmYv+UUAMDa3AQJ7/VHgVoDSzP+KoiIiPSB36i1bOKP8dJ2YsTjMDZSwNSYI/KJiIj0hd+qtejopSxpe+vUnlzlm4iIqAYwuaklmTl5GLrkH2m/fdO6uyI5ERFRfcbkppYs3V3ciTh8oJeMkRARERk2Jje1ZMU/FwAAwe2dMTGotczREBERGS4mN7UgOS1H2p7Um4kNERFRTWJyUwv2n7sOAHCwMoOvu73M0RARERk2Jje14Lv9KQCA7q2ayBsIERFRA8DkpoadzchByo07AIC2TtYyR0NERGT4mNzUsGNXsqXtib1byRgJERFRw8DkpoZtiL8MAHi8gzOUJsYyR0NERGT4mNzUsFu5BQAAIwVnIyYiIqoNTG5qkFojcOF6LgBwxW8iIqJawuSmBkUnpeFugRrmpkZo58zOxERERLWByU0NmvPncQBAN4/GXCSTiIioljC5qSHL/z6PdFUeAOCdAVxLioiIqLYwuakhn8Wckba9XW1ljISIiKhhYXJTAzQagdt5hQCAb8f4yRwNERFRw8LkpgasiUuVtoPaOcoYCRERUcPD5KYGbP73mrRtYswfMRERUW3iN28NiD1/AwDg79FY5kiIiIgaHiY3NWhUoLvcIRARETU4sic3S5YsgYeHB8zNzREQEIC4uLgy6x4/fhzPPvssPDw8oFAosGjRotoLtILuFailbR83O/kCISIiaqBkTW7WrVuHsLAwREZGIiEhAZ07d0ZISAgyMjJ01r9z5w5atWqFBQsWwMXFpZajrZjUm3ekbbfGljJGQkRE1DDJmtx88sknePnllxEaGooOHTpg2bJlsLS0xIoVK3TW79atGxYuXIgXXngBSqWylqOtmNQbdx5eiYiIiGqMbMlNfn4+4uPjERwcXByMkRGCg4MRGxurt/vk5eVBpVJpfWrSiWv3r9/asVGN3oeIiIh0ky25uX79OtRqNZydnbXKnZ2dkZaWprf7REVFwdbWVvq4ubnp7dq6nMm4DQCwMDOu0fsQERGRbrJ3KK5p06dPR3Z2tvS5dOlSjd4vLfsuAKCtE1cBJyIikoOJXDd2cHCAsbEx0tPTtcrT09P12llYqVTWav8cheL+6t9tnKxq7Z5ERERUTLaWGzMzM/j6+iImJkYq02g0iImJQWBgoFxhVVtiahYAwL0JR0oRERHJQbaWGwAICwvDmDFj4OfnB39/fyxatAi5ubkIDQ0FAIwePRqurq6IiooCcL8T8okTJ6TtK1euIDExEVZWVmjTpo1sz1GSWggAQCOlrD9aIiKiBkvWb+Dhw4cjMzMTERERSEtLg4+PD6Kjo6VOxqmpqTAyKm5cunr1Krp06SLtf/TRR/joo48QFBSE3bt313b4pQghoNbcT25acI4bIiIiWSiE+K+poYFQqVSwtbVFdnY2bGxs9Hrtu/lqtI+IBgAcnx3C1hsiIiI9qcz3t8GPlqpNaap70raFKYeCExERyYHJjR5l5uRJ20ZGChkjISIiariY3OhRUT7TpJGZvIEQERE1YExu9KioM7GdpanMkRARETVcTG70qCi5MeYrKSIiItkwudGjojlujI34YyUiIpILv4X1qFBquZE5ECIiogaMX8N6pNGw5YaIiEhu/BbWI6nlhl1uiIiIZMPkRo+KWm5M2HJDREQkG34L61FRyw1zGyIiIvnwa1iP0v9bfoFDwYmIiOTD5EaPihbKvHjjjsyREBERNVxMbvTo6KUsAEBTW3N5AyEiImrAmNzo0eVbdwEA5zNzZY6EiIio4WJyo0f5hRoAwDNdXWWOhIiIqOFicqNH9wrVAIDUm+xzQ0REJBcmN3pka3F/NfBuHo1ljoSIiKjhYnKjR1b/jZZSmhrLHAkREVHDxeRGjzT/rQrOaW6IiIjkw+RGj9T3+xPDSMHshoiISC5MbvRIsOWGiIhIdkxu9KjotZSCLTdERESyYXKjR/+tm8nXUkRERDJicqNHe05nAgCu/DdTMREREdU+Jjc14PrtPLlDICIiarCY3OhR+6Y2AIDH2jrIHAkREVHDxeRGj8xM7v84jdnnhoiISDZMbvRI81+PYmOOBSciIpINkxs9Uv+X3BgxuSEiIpINkxs9Kprnhq+liIiI5MPkRo+KW25kDoSIiKgB49ewHp3JuA0AUIAtN0RERHJhclMD2KGYiIhIPnUiuVmyZAk8PDxgbm6OgIAAxMXFlVt//fr18PLygrm5OTp27IgtW7bUUqRlK1o0EwDcGlvIGAkREVHDJntys27dOoSFhSEyMhIJCQno3LkzQkJCkJGRobP+/v37MWLECIwfPx5HjhzBU089haeeegpJSUm1HLm2vEKNtG2lNJExEiIiooZNIUo2OcggICAA3bp1w+LFiwEAGo0Gbm5uePXVVxEeHl6q/vDhw5Gbm4s///xTKuvevTt8fHywbNmyh95PpVLB1tYW2dnZsLGx0dtzXL+dB795OwAA5+cP4nBwIiIiParM97esLTf5+fmIj49HcHCwVGZkZITg4GDExsbqPCc2NlarPgCEhISUWT8vLw8qlUrrUxMu3siVtpnYEBERyUfW5Ob69etQq9VwdnbWKnd2dkZaWprOc9LS0ipVPyoqCra2ttLHzc1NP8E/4E6+ukauS0RERJUje5+bmjZ9+nRkZ2dLn0uXLtXIfXq2dcT5+YNw5L3+NXJ9IiIiqhhZe746ODjA2NgY6enpWuXp6elwcXHReY6Li0ul6iuVSiiVSv0E/BBGRgrYNzKrlXsRERGRbrK23JiZmcHX1xcxMTFSmUajQUxMDAIDA3WeExgYqFUfALZv315mfSIiImpYZB+zHBYWhjFjxsDPzw/+/v5YtGgRcnNzERoaCgAYPXo0XF1dERUVBQCYOnUqgoKC8PHHH2Pw4MFYu3YtDh8+jK+//lrOxyAiIqI6QvbkZvjw4cjMzERERATS0tLg4+OD6OhoqdNwamoqjEos1vToo49izZo1mDlzJt599120bdsWv/32G7y9veV6BCIiIqpDZJ/nprbV1Dw3REREVHPqzTw3RERERPrG5IaIiIgMCpMbIiIiMihMboiIiMigMLkhIiIig8LkhoiIiAwKkxsiIiIyKExuiIiIyKAwuSEiIiKDIvvyC7WtaEJmlUolcyRERERUUUXf2xVZWKHBJTc5OTkAADc3N5kjISIiosrKycmBra1tuXUa3NpSGo0GV69ehbW1NRQKhV6vrVKp4ObmhkuXLjWYdasa4jMDfO6G9NwN8ZmBhvncDfGZgfrz3EII5OTkoFmzZloLauvS4FpujIyM0Lx58xq9h42NTZ3+B1ITGuIzA3zuhqQhPjPQMJ+7IT4zUD+e+2EtNkXYoZiIiIgMCpMbIiIiMihMbvRIqVQiMjISSqVS7lBqTUN8ZoDP3ZCeuyE+M9Awn7shPjNgmM/d4DoUExERkWFjyw0REREZFCY3REREZFCY3BAREZFBYXJDREREBoXJjZ4sWbIEHh4eMDc3R0BAAOLi4uQOqUx///03hgwZgmbNmkGhUOC3337TOi6EQEREBJo2bQoLCwsEBwfjzJkzWnVu3ryJkSNHwsbGBnZ2dhg/fjxu376tVefff/9Fz549YW5uDjc3N3z44YelYlm/fj28vLxgbm6Ojh07YsuWLXp/XgCIiopCt27dYG1tDScnJzz11FNITk7WqnPv3j1MnjwZTZo0gZWVFZ599lmkp6dr1UlNTcXgwYNhaWkJJycnTJs2DYWFhVp1du/eja5du0KpVKJNmzZYtWpVqXhq69/L0qVL0alTJ2lyrsDAQGzdutWgn/lBCxYsgEKhwOuvvy6VGeJzz5o1CwqFQuvj5eVl0M8MAFeuXMFLL72EJk2awMLCAh07dsThw4el44b498zDw6PU71qhUGDy5MkADPd3XSmCqm3t2rXCzMxMrFixQhw/fly8/PLLws7OTqSnp8sdmk5btmwRM2bMEBs3bhQAxK+//qp1fMGCBcLW1lb89ttv4ujRo+LJJ58ULVu2FHfv3pXqDBgwQHTu3FkcOHBA7N27V7Rp00aMGDFCOp6dnS2cnZ3FyJEjRVJSkvjpp5+EhYWF+Oqrr6Q6//zzjzA2NhYffvihOHHihJg5c6YwNTUVx44d0/szh4SEiJUrV4qkpCSRmJgoBg0aJFq0aCFu374t1Zk4caJwc3MTMTEx4vDhw6J79+7i0UcflY4XFhYKb29vERwcLI4cOSK2bNkiHBwcxPTp06U658+fF5aWliIsLEycOHFCfPHFF8LY2FhER0dLdWrz38umTZvE5s2bxenTp0VycrJ49913hampqUhKSjLYZy4pLi5OeHh4iE6dOompU6dK5Yb43JGRkeKRRx4R165dkz6ZmZkG/cw3b94U7u7uYuzYseLgwYPi/PnzYtu2beLs2bNSHUP8e5aRkaH1e96+fbsAIHbt2iWEMMzfdWUxudEDf39/MXnyZGlfrVaLZs2aiaioKBmjqpgHkxuNRiNcXFzEwoULpbKsrCyhVCrFTz/9JIQQ4sSJEwKAOHTokFRn69atQqFQiCtXrgghhPjyyy+Fvb29yMvLk+q88847wtPTU9p//vnnxeDBg7XiCQgIEK+88open1GXjIwMAUDs2bNHCHH/GU1NTcX69eulOidPnhQARGxsrBDiflJoZGQk0tLSpDpLly4VNjY20nO+/fbb4pFHHtG61/Dhw0VISIi0L/e/F3t7e/HNN98Y/DPn5OSItm3biu3bt4ugoCApuTHU546MjBSdO3fWecxQn/mdd94Rjz32WJnHG8rfs6lTp4rWrVsLjUZjsL/ryuJrqWrKz89HfHw8goODpTIjIyMEBwcjNjZWxsiq5sKFC0hLS9N6HltbWwQEBEjPExsbCzs7O/j5+Ul1goODYWRkhIMHD0p1evXqBTMzM6lOSEgIkpOTcevWLalOyfsU1amNn1t2djYAoHHjxgCA+Ph4FBQUaMXj5eWFFi1aaD13x44d4ezsrBWvSqXC8ePHpTrlPZOc/17UajXWrl2L3NxcBAYGGvwzT548GYMHDy4VmyE/95kzZ9CsWTO0atUKI0eORGpqqkE/86ZNm+Dn54dhw4bByckJXbp0wfLly6XjDeHvWX5+Pn788UeMGzcOCoXCYH/XlcXkppquX78OtVqt9Y8EAJydnZGWliZTVFVXFHN5z5OWlgYnJyet4yYmJmjcuLFWHV3XKHmPsurU9M9No9Hg9ddfR48ePeDt7S3FYmZmBjs7uzLjqc4zqVQq3L17V5Z/L8eOHYOVlRWUSiUmTpyIX3/9FR06dDDoZ167di0SEhIQFRVV6pihPndAQABWrVqF6OhoLF26FBcuXEDPnj2Rk5NjsM98/vx5LF26FG3btsW2bdswadIkvPbaa/juu++04jbkv2e//fYbsrKyMHbsWCkOQ/xdV1aDWxWcaPLkyUhKSsK+ffvkDqVWeHp6IjExEdnZ2diwYQPGjBmDPXv2yB1Wjbl06RKmTp2K7du3w9zcXO5was3AgQOl7U6dOiEgIADu7u74+eefYWFhIWNkNUej0cDPzw/z588HAHTp0gVJSUlYtmwZxowZI3N0tePbb7/FwIED0axZM7lDqVPYclNNDg4OMDY2LtUTPT09HS4uLjJFVXVFMZf3PC4uLsjIyNA6XlhYiJs3b2rV0XWNkvcoq05N/tymTJmCP//8E7t27ULz5s2lchcXF+Tn5yMrK6vMeKrzTDY2NrCwsJDl34uZmRnatGkDX19fREVFoXPnzvjss88M9pnj4+ORkZGBrl27wsTEBCYmJtizZw8+//xzmJiYwNnZ2SCf+0F2dnZo164dzp49a7C/66ZNm6JDhw5aZe3bt5dexxn637OLFy9ix44dmDBhglRmqL/rymJyU01mZmbw9fVFTEyMVKbRaBATE4PAwEAZI6uali1bwsXFRet5VCoVDh48KD1PYGAgsrKyEB8fL9XZuXMnNBoNAgICpDp///03CgoKpDrbt2+Hp6cn7O3tpTol71NUpyZ+bkIITJkyBb/++it27tyJli1bah339fWFqampVjzJyclITU3Veu5jx45p/SHcvn07bGxspD+wD3umuvDvRaPRIC8vz2CfuV+/fjh27BgSExOlj5+fH0aOHCltG+JzP+j27ds4d+4cmjZtarC/6x49epSa0uH06dNwd3cHYLh/z4qsXLkSTk5OGDx4sFRmqL/rSpO7R7MhWLt2rVAqlWLVqlXixIkT4v/+7/+EnZ2dVk/0uiQnJ0ccOXJEHDlyRAAQn3zyiThy5Ii4ePGiEOL+0Ek7Ozvx+++/i3///VcMHTpU59DJLl26iIMHD4p9+/aJtm3bag2dzMrKEs7OzmLUqFEiKSlJrF27VlhaWpYaOmliYiI++ugjcfLkSREZGVljQycnTZokbG1txe7du7WGUN65c0eqM3HiRNGiRQuxc+dOcfjwYREYGCgCAwOl40XDJx9//HGRmJgooqOjhaOjo87hk9OmTRMnT54US5Ys0Tl8srb+vYSHh4s9e/aICxcuiH///VeEh4cLhUIh/vrrL4N9Zl1KjpYy1Od+8803xe7du8WFCxfEP//8I4KDg4WDg4PIyMgw2GeOi4sTJiYm4v333xdnzpwRq1evFpaWluLHH3+U6hji3zMh7o9MatGihXjnnXdKHTPE33VlMbnRky+++EK0aNFCmJmZCX9/f3HgwAG5QyrTrl27BIBSnzFjxggh7g+ffO+994Szs7NQKpWiX79+Ijk5WesaN27cECNGjBBWVlbCxsZGhIaGipycHK06R48eFY899phQKpXC1dVVLFiwoFQsP//8s2jXrp0wMzMTjzzyiNi8eXONPLOu5wUgVq5cKdW5e/eu+N///ifs7e2FpaWlePrpp8W1a9e0rpOSkiIGDhwoLCwshIODg3jzzTdFQUGBVp1du3YJHx8fYWZmJlq1aqV1jyK19e9l3Lhxwt3dXZiZmQlHR0fRr18/KbEx1GfW5cHkxhCfe/jw4aJp06bCzMxMuLq6iuHDh2vN92KIzyyEEH/88Yfw9vYWSqVSeHl5ia+//lrruCH+PRNCiG3btgkApZ5FCMP9XVeGQgghZGkyIiIiIqoB7HNDREREBoXJDRERERkUJjdERERkUJjcEBERkUFhckNEREQGhckNERERGRQmN0RERGRQmNwQUZ3Qu3dvvP7663KHQUQGgMkNEVVIWcnHqlWrYGdnV+vx7N69GwqFotQCgVVx4cIFvPjii2jWrBnMzc3RvHlzDB06FKdOnQIApKSkQKFQIDExsdr3IqKaZyJ3AEREciooKED//v3h6emJjRs3omnTprh8+TK2bt2ql8SJiGofW26ISK/Gjh2Lp556CrNnz4ajoyNsbGwwceJE5OfnS3Vyc3MxevRoWFlZoWnTpvj4449LXeeHH36An58frK2t4eLighdffFFaxTglJQV9+vQBANjb20OhUGDs2LEA7q9MHBUVhZYtW8LCwgKdO3fGhg0byoz3+PHjOHfuHL788kt0794d7u7u6NGjB+bNm4fu3bsDgLSKfJcuXaBQKNC7d2/p/G+++Qbt27eHubk5vLy88OWXX0rHilp81q5di0cffRTm5ubw9vbGnj17qvbDJaIKYXJDRHoXExODkydPYvfu3fjpp5+wceNGzJ49Wzo+bdo07NmzB7///jv++usv7N69GwkJCVrXKCgowNy5c3H06FH89ttvSElJkRIYNzc3/PLLLwCA5ORkXLt2DZ999hkAICoqCt9//z2WLVuG48eP44033sBLL71UZkLh6OgIIyMjbNiwAWq1WmeduLg4AMCOHTtw7do1bNy4EQCwevVqRERE4P3338fJkycxf/58vPfee/juu++0zp82bRrefPNNHDlyBIGBgRgyZAhu3LhRyZ8qEVWY3Ct3ElH98ODK2kVWrlwpbG1tpf0xY8aIxo0bi9zcXKls6dKlwsrKSqjVapGTkyPMzMzEzz//LB2/ceOGsLCw0Hn9IocOHRIApNWai1a3v3XrllTn3r17wtLSUuzfv1/r3PHjx4sRI0aUee3FixcLS0tLYW1tLfr06SPmzJkjzp07Jx2/cOGCACCOHDmidV7r1q3FmjVrtMrmzp0rAgMDtc4ruYJ0QUGBaN68ufjggw/KjIeIqoctN0Skd507d4alpaW0HxgYiNu3b+PSpUs4d+4c8vPzERAQIB1v3LgxPD09ta4RHx+PIUOGoEWLFrC2tkZQUBAAIDU1tcz7nj17Fnfu3EH//v1hZWUlfb7//nucO3euzPMmT56MtLQ0rF69GoGBgVi/fj0eeeQRbN++vcxzcnNzce7cOYwfP17rXvPmzSt1r8DAQGnbxMQEfn5+OHnyZJnXJqLqYYdiIqoQGxsbZGdnlyrPysqCra2tXu+Vm5uLkJAQhISEYPXq1XB0dERqaipCQkK0+u486Pbt2wCAzZs3w9XVVeuYUqks957W1tYYMmQIhgwZgnnz5iEkJATz5s1D//79y73X8uXLtRI1ADA2Nn7oMxJRzWHLDRFViKenZ6l+MQCQkJCAdu3aaZUdPXoUd+/elfYPHDgAKysruLm5oXXr1jA1NcXBgwel47du3cLp06el/VOnTuHGjRtYsGABevbsCS8vL6kzcREzMzMA0Oon06FDByiVSqSmpqJNmzZaHzc3two/q0KhgJeXF3Jzc8u8l7OzM5o1a4bz58+XuldRB+SSz1+ksLAQ8fHxaN++fYXjIaLKYcsNEVXIpEmTsHjxYrz22muYMGEClEolNm/ejJ9++gl//PGHVt38/HyMHz8eM2fOREpKCiIjIzFlyhQYGRnBysoK48ePx7Rp09CkSRM4OTlhxowZMDIq/n+tFi1awMzMDF988QUmTpyIpKQkzJ07V+se7u7uUCgU+PPPPzFo0CBYWFjA2toab731Ft544w1oNBo89thjyM7Oxj///AMbGxuMGTOm1HMlJiYiMjISo0aNQocOHWBmZoY9e/ZgxYoVeOeddwAATk5OsLCwQHR0NJo3bw5zc3PY2tpi9uzZeO2112Bra4sBAwYgLy8Phw8fxq1btxAWFibdY8mSJWjbti3at2+PTz/9FLdu3cK4ceP0+eshopLk7vRDRPVHXFyc6N+/v3B0dBS2trYiICBA/Prrr1p1xowZI4YOHSoiIiJEkyZNhJWVlXj55ZfFvXv3pDo5OTnipZdeEpaWlsLZ2Vl8+OGHpTosr1mzRnh4eAilUikCAwPFpk2bSnXqnTNnjnBxcREKhUKMGTNGCCGERqMRixYtEp6ensLU1FQ4OjqKkJAQsWfPHp3PlJmZKV577TXh7e0trKyshLW1tejYsaP46KOPhFqtluotX75cuLm5CSMjIxEUFCSVr169Wvj4+AgzMzNhb28vevXqJTZu3CiEKO5QvGbNGuHv7y/MzMxEhw4dxM6dO6v2CyCiClEIIYTcCRYRGY6xY8ciKysLv/32m9yhyC4lJQUtW7bEkSNH4OPjI3c4RA0G+9wQERGRQWFyQ0RERAaFr6WIiIjIoLDlhoiIiAwKkxsiIiIyKExuiIiIyKAwuSEiIiKDwuSGiIiIDAqTGyIiIjIoTG6IiIjIoDC5ISIiIoPC5IaIiIgMyv8DVNwL0WJtW3IAAAAASUVORK5CYII=",
"text/plain": [
"<Figure size 640x480 with 1 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"import matplotlib.pyplot as plt\n",
"data = jnp.concatenate([out[\"metrics\"][x][\"returned_episode_returns\"].mean(-1).reshape(-1) for x in range(3)])\n",
"plt.plot(data)\n",
"ax = plt.gca()\n",
"\n",
"plt.xlabel(\"Update Step\")\n",
"plt.ylabel(\"Return\")\n",
"plt.title(\"PPO Agent Returns\")\n",
"plt.savefig(\"PPO_results.pdf\")\n",
"plt.show()"
]
},
{
"cell_type": "code",
"execution_count": 19,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"2024-12-17 20:40:06.756483: W external/xla/xla/tsl/framework/bfc_allocator.cc:497] Allocator (GPU_0_bfc) ran out of memory trying to allocate 7.63GiB (rounded to 8192000000)requested by op \n",
"2024-12-17 20:40:06.756558: W external/xla/xla/tsl/framework/bfc_allocator.cc:508] ***************************************************_________________________________________________\n",
"E1217 20:40:06.756588 512196 pjrt_stream_executor_client.cc:3086] Execution of replica 0 failed: RESOURCE_EXHAUSTED: Out of memory while trying to allocate 8192000000 bytes.\n"
]
},
{
"ename": "XlaRuntimeError",
"evalue": "RESOURCE_EXHAUSTED: Out of memory while trying to allocate 8192000000 bytes.",
"output_type": "error",
"traceback": [
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
"\u001b[0;31mXlaRuntimeError\u001b[0m Traceback (most recent call last)",
"Cell \u001b[0;32mIn[19], line 33\u001b[0m\n\u001b[1;32m 28\u001b[0m runner_state \u001b[38;5;241m=\u001b[39m (train_state, env_state, obsv, rng)\n\u001b[1;32m 29\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m runner_state, env_state\n\u001b[0;32m---> 33\u001b[0m runner_state, env_logs \u001b[38;5;241m=\u001b[39m \u001b[43mjax\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mlax\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mscan\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 34\u001b[0m \u001b[43m \u001b[49m\u001b[43m_env_step\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mout\u001b[49m\u001b[43m[\u001b[49m\u001b[38;5;124;43m'\u001b[39;49m\u001b[38;5;124;43mrunner_state\u001b[39;49m\u001b[38;5;124;43m'\u001b[39;49m\u001b[43m]\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;28;43;01mNone\u001b[39;49;00m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m100\u001b[39;49m\n\u001b[1;32m 35\u001b[0m \u001b[43m)\u001b[49m\n",
" \u001b[0;31m[... skipping hidden 11 frame]\u001b[0m\n",
"File \u001b[0;32m~/Documents/Code/solarcarsim/.venv/lib/python3.12/site-packages/jax/_src/interpreters/pxla.py:1298\u001b[0m, in \u001b[0;36mExecuteReplicated.__call__\u001b[0;34m(self, *args)\u001b[0m\n\u001b[1;32m 1296\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_handle_token_bufs(result_token_bufs, sharded_runtime_token)\n\u001b[1;32m 1297\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[0;32m-> 1298\u001b[0m results \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mxla_executable\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mexecute_sharded\u001b[49m\u001b[43m(\u001b[49m\u001b[43minput_bufs\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 1300\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m dispatch\u001b[38;5;241m.\u001b[39mneeds_check_special():\n\u001b[1;32m 1301\u001b[0m out_arrays \u001b[38;5;241m=\u001b[39m results\u001b[38;5;241m.\u001b[39mdisassemble_into_single_device_arrays()\n",
"\u001b[0;31mXlaRuntimeError\u001b[0m: RESOURCE_EXHAUSTED: Out of memory while trying to allocate 8192000000 bytes."
]
}
],
"source": [
"tstate = out['runner_state'][0]\n",
"lastobs = out['runner_state'][2]\n",
"# tstate.apply_fn(tstate.params, lastobs)\n",
"\n",
"env = Snax()\n",
"env_params = env.default_params\n",
"env = LogWrapper(env)\n",
"env = VecEnv(env)\n",
"\n",
"def _env_step(runner_state, unused):\n",
" train_state, env_state, last_obs, rng = runner_state\n",
"\n",
" # SELECT ACTION\n",
" rng, _rng = jax.random.split(rng)\n",
" pi, value = train_state.apply_fn(train_state.params, last_obs)\n",
" action = pi.sample(seed=_rng)\n",
" log_prob = pi.log_prob(action)\n",
"\n",
" # STEP ENV\n",
" rng, _rng = jax.random.split(rng)\n",
" rng_step = jax.random.split(_rng, config[\"NUM_ENVS\"])\n",
" obsv, env_state, reward, done, info = env.step(\n",
" rng_step, env_state, action, env_params\n",
" )\n",
" transition = Transition(\n",
" done, action, value, reward, log_prob, last_obs, info\n",
" )\n",
" runner_state = (train_state, env_state, obsv, rng)\n",
" return runner_state, env_state\n",
"\n",
"\n",
"\n",
"runner_state, env_logs = jax.lax.scan(\n",
" _env_step, out['runner_state'], None, 100\n",
")"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"TrainState(step=Array(1874688, dtype=int32, weak_type=True), apply_fn=<bound method Module.apply of ActorCritic(\n",
" # attributes\n",
" action_dim = 1\n",
" activation = 'tanh'\n",
")>, params={'params': {'Dense_0': {'bias': Array([-5.3029938e-04, 0.0000000e+00, 0.0000000e+00, 0.0000000e+00,\n",
" 1.9191748e-03, 0.0000000e+00, -1.7144637e-04, 2.5281330e-05,\n",
" 1.4641370e-03, 0.0000000e+00, -1.3245111e-03, 0.0000000e+00,\n",
" 0.0000000e+00, 8.3523680e-04, 0.0000000e+00, 0.0000000e+00,\n",
" 6.0847404e-05, -4.7602013e-04, 0.0000000e+00, 1.3794134e-03,\n",
" 0.0000000e+00, -7.6553306e-06, 0.0000000e+00, 2.1930558e-04,\n",
" 0.0000000e+00, -2.2188693e-03, 1.4511290e-03, 1.9425271e-03,\n",
" 0.0000000e+00, 0.0000000e+00, 0.0000000e+00, 0.0000000e+00,\n",
" 0.0000000e+00, 0.0000000e+00, 0.0000000e+00, 1.1256059e-03,\n",
" -5.8398215e-04, 0.0000000e+00, -1.8540439e-03, 0.0000000e+00,\n",
" 0.0000000e+00, 0.0000000e+00, 0.0000000e+00, 0.0000000e+00,\n",
" 0.0000000e+00, -6.9769150e-05, 0.0000000e+00, 0.0000000e+00,\n",
" 0.0000000e+00, 6.8441045e-04, 0.0000000e+00, 0.0000000e+00,\n",
" 0.0000000e+00, 0.0000000e+00, -8.8643702e-04, 1.3925527e-03,\n",
" -1.4111768e-04, 0.0000000e+00, 0.0000000e+00, -2.0299070e-03,\n",
" 6.8957923e-04, -1.2412324e-03, 5.5068691e-04, -5.2116567e-04,\n",
" 0.0000000e+00, 0.0000000e+00, 0.0000000e+00, 6.2125333e-04,\n",
" 9.1447402e-04, 0.0000000e+00, 0.0000000e+00, 0.0000000e+00,\n",
" 5.2126928e-04, 0.0000000e+00, 5.8222190e-04, 0.0000000e+00,\n",
" 0.0000000e+00, 2.2282777e-03, 1.3834524e-03, -1.0245681e-03,\n",
" 1.7563089e-04, -2.4510939e-03, 0.0000000e+00, -1.6243160e-03,\n",
" -9.4084017e-04, 0.0000000e+00, 0.0000000e+00, 0.0000000e+00,\n",
" -9.0897578e-04, 0.0000000e+00, -1.0096998e-03, 0.0000000e+00,\n",
" 0.0000000e+00, 0.0000000e+00, 0.0000000e+00, 3.1322434e-03,\n",
" 0.0000000e+00, 0.0000000e+00, 2.2586577e-03, -2.4337969e-03,\n",
" 5.6456536e-04, 3.0193112e-03, 0.0000000e+00, 0.0000000e+00,\n",
" -2.9874803e-03, 0.0000000e+00, 0.0000000e+00, 0.0000000e+00,\n",
" -3.7863411e-03, 0.0000000e+00, 0.0000000e+00, 0.0000000e+00,\n",
" 0.0000000e+00, 0.0000000e+00, 0.0000000e+00, -3.2294096e-04,\n",
" 2.7185181e-04, 1.4245387e-08, -1.9866133e-03, -2.2128341e-03,\n",
" 0.0000000e+00, -1.7956822e-04, 1.4105116e-03, 0.0000000e+00,\n",
" -6.7686941e-04, 0.0000000e+00, 0.0000000e+00, 4.0784094e-04,\n",
" 0.0000000e+00, 0.0000000e+00, -1.0925150e-03, -9.4625680e-04,\n",
" -1.0735401e-03, 1.7537770e-03, -1.4924963e-03, -1.0218532e-03,\n",
" 0.0000000e+00, -3.4914708e-03, -4.7835559e-04, 1.9216866e-03,\n",
" 0.0000000e+00, 7.1237684e-04, -3.2128301e-03, -1.7769258e-03,\n",
" 2.2146765e-03, 0.0000000e+00, 0.0000000e+00, 0.0000000e+00,\n",
" 6.1193650e-04, 0.0000000e+00, 0.0000000e+00, 1.7334922e-04,\n",
" -2.6329695e-03, -1.3060468e-03, 3.4790873e-03, 0.0000000e+00,\n",
" 1.2544972e-03, 0.0000000e+00, 0.0000000e+00, 0.0000000e+00,\n",
" 0.0000000e+00, 0.0000000e+00, 0.0000000e+00, 0.0000000e+00,\n",
" 0.0000000e+00, -1.2978822e-03, -3.8260728e-04, 0.0000000e+00,\n",
" 0.0000000e+00, 0.0000000e+00, -4.5437412e-04, 0.0000000e+00,\n",
" 0.0000000e+00, 7.1664042e-05, 0.0000000e+00, 0.0000000e+00,\n",
" 0.0000000e+00, 0.0000000e+00, 0.0000000e+00, 7.0464790e-05,\n",
" -8.9069502e-04, 0.0000000e+00, 6.6835230e-04, 0.0000000e+00,\n",
" 6.8251284e-05, 0.0000000e+00, 0.0000000e+00, 0.0000000e+00,\n",
" -1.0040104e-03, -2.3794189e-07, 0.0000000e+00, 0.0000000e+00,\n",
" 0.0000000e+00, 2.3229128e-04, 1.5453034e-03, -5.0179427e-05,\n",
" 2.2772038e-03, -2.0145031e-03, 9.4736563e-03, 7.9449776e-05,\n",
" -7.4491683e-05, 0.0000000e+00, 2.5824676e-04, 0.0000000e+00,\n",
" 1.2736652e-03, 0.0000000e+00, 3.0285574e-04, 2.4916211e-04,\n",
" 0.0000000e+00, 0.0000000e+00, 7.7232631e-04, 5.4959516e-04,\n",
" -1.9705489e-03, 0.0000000e+00, 1.1921050e-03, -3.9399034e-04,\n",
" 0.0000000e+00, 3.7107369e-04, -4.8485940e-04, 0.0000000e+00,\n",
" 1.5376735e-04, 1.8611597e-03, -6.0213718e-04, -2.2827655e-03,\n",
" 0.0000000e+00, 0.0000000e+00, -2.4243153e-04, 0.0000000e+00,\n",
" -2.2830942e-03, 4.1451986e-04, -2.6722133e-04, 2.5362780e-04,\n",
" 0.0000000e+00, 0.0000000e+00, 0.0000000e+00, 0.0000000e+00,\n",
" 0.0000000e+00, 0.0000000e+00, 0.0000000e+00, 0.0000000e+00,\n",
" 0.0000000e+00, 0.0000000e+00, 0.0000000e+00, 0.0000000e+00,\n",
" 0.0000000e+00, 0.0000000e+00, 0.0000000e+00, 0.0000000e+00,\n",
" 0.0000000e+00, 0.0000000e+00, -6.0310279e-04, 0.0000000e+00,\n",
" 0.0000000e+00, -4.7796275e-04, 0.0000000e+00, 0.0000000e+00], dtype=float32), 'kernel': Array([[-0.04059862, -0.05616716, 0.05436023, ..., -0.01495443,\n",
" -0.09417699, -0.03651878],\n",
" [-0.04345348, 0.0237919 , 0.13925986, ..., -0.03692472,\n",
" 0.03002992, -0.11007421],\n",
" [ 0.09764732, -0.03158703, -0.02001419, ..., -0.14909488,\n",
" 0.02449407, 0.01721021],\n",
" ...,\n",
" [ 0.11338337, -0.04206258, 0.11930869, ..., -0.01594234,\n",
" 0.0031549 , 0.07585711],\n",
" [-0.09437636, -0.10784481, -0.13662401, ..., 0.0185915 ,\n",
" 0.04616122, -0.02840761],\n",
" [-0.03904481, -0.04892467, 0.05431201, ..., 0.1215561 ,\n",
" -0.19458926, 0.04553339]], dtype=float32)}, 'Dense_1': {'bias': Array([ 0.00027806, 0.04620876, -0.00658554, -0.04454401, -0.00277375,\n",
" 0.03381715, 0.03254296, 0.00331175, -0.04037352, 0.04094049,\n",
" 0.00339541, -0.0373533 , -0.03950972, 0.00459826, 0.00176061,\n",
" -0.04285378, 0.03781348, 0.04358079, 0.03816335, 0.03898 ,\n",
" 0.03793908, -0.0067359 , -0.0411862 , 0.00432372, -0.03645715,\n",
" 0.03726813, -0.00039956, 0.03472266, -0.00593952, -0.04233544,\n",
" -0.00230428, -0.00433152, 0.03425088, -0.02485432, -0.0286654 ,\n",
" -0.00356171, 0.03057408, 0.03985466, 0.00293833, 0.00458675,\n",
" 0.02603373, -0.03051696, 0.03516515, 0.00130115, 0.0465891 ,\n",
" -0.04041 , -0.04491264, 0.01050323, -0.03533997, 0.03221814,\n",
" -0.00215372, 0.04099191, 0.03301746, 0.04153331, -0.00470519,\n",
" -0.00428926, -0.05097796, -0.03040344, -0.03735339, -0.03491513,\n",
" 0.01251048, 0.03140776, 0.00783039, 0.00627123, -0.02943583,\n",
" 0.03217795, -0.03619361, 0.04503313, 0.00422618, 0.03048726,\n",
" -0.04530523, -0.05115746, 0.00748269, 0.04205422, 0.04298782,\n",
" 0.03045189, -0.03948338, 0.00261836, 0.03464689, 0.00538703,\n",
" -0.00227268, -0.03553307, 0.00145856, 0.02827597, -0.03024151,\n",
" -0.04150978, -0.03633608, -0.00803869, -0.00474264, -0.03425602,\n",
" 0.03940321, 0.03186259, -0.00434997, 0.00952879, 0.04427051,\n",
" 0.00112212, -0.01438359, 0.02742064, 0.00732329, -0.03644897,\n",
" 0.02770537, -0.00053647, -0.03326581, 0.03436317, -0.03182915,\n",
" 0.00353186, -0.0258979 , -0.00346143, -0.00030614, 0.00350122,\n",
" 0.04173567, -0.04064614, -0.01026691, -0.04184798, -0.0351134 ,\n",
" 0.02159838, 0.03210129, 0.02979252, -0.00021149, -0.03641422,\n",
" -0.00728356, -0.00786742, 0.03055024, -0.0375047 , 0.03636042,\n",
" -0.03306672, 0.03809343, -0.00785372, 0.03908067, -0.02755055,\n",
" -0.0311247 , -0.03837723, 0.03915109, 0.00293649, -0.02566425,\n",
" -0.03642197, 0.00442762, -0.0285236 , -0.03219024, -0.03771985,\n",
" 0.03348036, 0.04192547, 0.04804754, -0.00390566, 0.03801316,\n",
" -0.0048022 , -0.02534208, 0.00532888, -0.00960828, 0.0399802 ,\n",
" 0.00194347, 0.04182222, -0.02789724, -0.03810298, -0.0374799 ,\n",
" -0.00092357, -0.03994033, -0.03276777, 0.0271517 , -0.03100638,\n",
" -0.04451067, -0.00705037, -0.02453071, 0.03519889, 0.03063235,\n",
" -0.03020622, -0.03580233, -0.03554969, 0.03846539, -0.00717684,\n",
" 0.0024833 , 0.0319246 , 0.02931642, 0.03770342, -0.03255963,\n",
" 0.03416643, 0.01054269, -0.03945149, -0.00351726, 0.04458899,\n",
" -0.00589401, -0.00648886, 0.0339095 , 0.02671813, 0.04369878,\n",
" 0.03415771, 0.03542192, 0.00600839, -0.0109551 , -0.037458 ,\n",
" -0.03981134, 0.03337134, 0.00489916, 0.00273095, -0.00618493,\n",
" 0.04161482, 0.03454573, -0.01003036, 0.00425193, 0.01817769,\n",
" 0.03138407, -0.03242443, 0.00188284, -0.00314224, 0.03295113,\n",
" 0.04222574, 0.03434506, 0.04464654, -0.03982402, -0.04468929,\n",
" 0.04249624, 0.00770373, -0.03094419, 0.00289513, 0.04945203,\n",
" 0.03187467, -0.04758247, 0.00177818, 0.00270677, -0.04519045,\n",
" -0.0402201 , -0.0426771 , 0.00278877, -0.03111694, -0.03696601,\n",
" -0.03909003, -0.03003668, 0.00376004, 0.03456468, 0.01219636,\n",
" 0.00517881, -0.0396665 , 0.04550315, -0.04317153, -0.00225738,\n",
" -0.02796482, -0.00212918, 0.0041019 , -0.03426032, -0.04060804,\n",
" 0.00500863, 0.0303803 , -0.03806275, -0.0432169 , 0.03569881,\n",
" 0.04669258, -0.00873193, -0.00346405, 0.02921363, 0.03867232,\n",
" 0.04459479, -0.03213866, -0.03638731, -0.03427472, 0.04575037,\n",
" -0.00120791], dtype=float32), 'kernel': Array([[ 0.0554822 , -0.07003432, 0.09695947, ..., -0.17977887,\n",
" 0.0366156 , 0.02077846],\n",
" [ 0.17207822, 0.09883893, 0.01466036, ..., -0.02480283,\n",
" 0.08038498, -0.09478654],\n",
" [ 0.00384633, 0.1082558 , 0.02827624, ..., -0.02226412,\n",
" 0.05913283, 0.08880645],\n",
" ...,\n",
" [ 0.0052855 , 0.08274142, -0.02554986, ..., 0.08520137,\n",
" 0.01621614, -0.10647655],\n",
" [ 0.08706143, 0.09899756, -0.05577984, ..., -0.05286903,\n",
" -0.06213011, -0.07769346],\n",
" [ 0.11625612, 0.03126499, -0.13369204, ..., -0.05385393,\n",
" -0.092626 , -0.06382608]], dtype=float32)}, 'Dense_2': {'bias': Array([0.47612667], dtype=float32), 'kernel': Array([[-5.04823923e-01],\n",
" [ 4.65460658e-01],\n",
" [-5.04793406e-01],\n",
" [-4.72569168e-01],\n",
" [ 5.04825413e-01],\n",
" [ 4.79185104e-01],\n",
" [ 4.80066299e-01],\n",
" [-5.04783750e-01],\n",
" [-4.73151356e-01],\n",
" [ 4.51244444e-01],\n",
" [ 5.04835188e-01],\n",
" [-4.73466516e-01],\n",
" [-4.83210683e-01],\n",
" [ 5.04850090e-01],\n",
" [ 5.04784822e-01],\n",
" [-4.91237015e-01],\n",
" [ 4.74481404e-01],\n",
" [ 4.75008428e-01],\n",
" [ 4.78206635e-01],\n",
" [ 4.73737508e-01],\n",
" [ 4.78371084e-01],\n",
" [ 5.04845023e-01],\n",
" [-4.80819106e-01],\n",
" [-4.72271591e-01],\n",
" [-4.73856926e-01],\n",
" [ 4.75976706e-01],\n",
" [ 9.55915993e-07],\n",
" [ 4.79922265e-01],\n",
" [ 5.04790187e-01],\n",
" [-4.81541991e-01],\n",
" [ 5.04812837e-01],\n",
" [ 5.04815102e-01],\n",
" [ 4.71088231e-01],\n",
" [-4.76686895e-01],\n",
" [-4.73729491e-01],\n",
" [-5.04812241e-01],\n",
" [ 4.79393840e-01],\n",
" [ 4.72649992e-01],\n",
" [-5.04822433e-01],\n",
" [-5.04823506e-01],\n",
" [ 4.76308912e-01],\n",
" [-4.75529820e-01],\n",
" [ 4.74255502e-01],\n",
" [-5.04849136e-01],\n",
" [ 4.87328082e-01],\n",
" [-4.72647727e-01],\n",
" [-4.74320143e-01],\n",
" [ 5.04813969e-01],\n",
" [-4.75550056e-01],\n",
" [ 4.75366712e-01],\n",
" [-5.04834890e-01],\n",
" [ 4.62294102e-01],\n",
" [ 4.76273477e-01],\n",
" [ 4.81204808e-01],\n",
" [ 5.04829705e-01],\n",
" [-4.72716808e-01],\n",
" [-4.76078093e-01],\n",
" [-4.71584499e-01],\n",
" [-4.79490250e-01],\n",
" [-4.75963056e-01],\n",
" [ 5.04846215e-01],\n",
" [ 4.72023100e-01],\n",
" [ 5.04857779e-01],\n",
" [ 5.04864097e-01],\n",
" [-4.75473702e-01],\n",
" [ 4.74616170e-01],\n",
" [-4.75657642e-01],\n",
" [ 4.74489599e-01],\n",
" [-5.04848897e-01],\n",
" [ 4.76847380e-01],\n",
" [-4.80367184e-01],\n",
" [-4.77631360e-01],\n",
" [ 5.04855454e-01],\n",
" [ 4.69335794e-01],\n",
" [ 4.70332831e-01],\n",
" [ 4.77089763e-01],\n",
" [-4.76223826e-01],\n",
" [-5.04711330e-01],\n",
" [ 4.76124525e-01],\n",
" [ 4.71102148e-01],\n",
" [-5.04813373e-01],\n",
" [-4.76169169e-01],\n",
" [ 5.04840791e-01],\n",
" [ 4.74855334e-01],\n",
" [-4.73940402e-01],\n",
" [-4.77510095e-01],\n",
" [-4.69742119e-01],\n",
" [ 5.04834712e-01],\n",
" [ 4.07728885e-06],\n",
" [-4.77828860e-01],\n",
" [ 4.78402615e-01],\n",
" [ 4.75762784e-01],\n",
" [ 5.04799962e-01],\n",
" [ 5.04824638e-01],\n",
" [ 4.77130145e-01],\n",
" [-5.04835606e-01],\n",
" [-5.04765272e-01],\n",
" [ 4.85664934e-01],\n",
" [ 5.04874110e-01],\n",
" [-4.76336956e-01],\n",
" [ 4.73611504e-01],\n",
" [ 5.04758954e-01],\n",
" [-4.73996580e-01],\n",
" [ 4.81847137e-01],\n",
" [-4.73559260e-01],\n",
" [ 5.04823327e-01],\n",
" [-4.75162297e-01],\n",
" [ 5.04778862e-01],\n",
" [ 5.04798412e-01],\n",
" [-5.04776955e-01],\n",
" [ 4.74137306e-01],\n",
" [-4.81388301e-01],\n",
" [-5.04833639e-01],\n",
" [-4.77248192e-01],\n",
" [-4.74423558e-01],\n",
" [ 4.75161046e-01],\n",
" [ 4.78681266e-01],\n",
" [ 4.74670380e-01],\n",
" [ 5.04786909e-01],\n",
" [-4.53696519e-01],\n",
" [-5.04794300e-01],\n",
" [ 5.04820824e-01],\n",
" [ 4.74956840e-01],\n",
" [-4.66621697e-01],\n",
" [ 4.78065014e-01],\n",
" [-4.74870712e-01],\n",
" [ 4.75875765e-01],\n",
" [-5.04830480e-01],\n",
" [ 4.70007926e-01],\n",
" [-4.74391580e-01],\n",
" [ 1.86074972e-02],\n",
" [-4.84576911e-01],\n",
" [ 4.70582545e-01],\n",
" [-5.04855335e-01],\n",
" [-4.74273682e-01],\n",
" [-4.81450081e-01],\n",
" [-5.04836082e-01],\n",
" [-4.72928852e-01],\n",
" [-4.76107746e-01],\n",
" [-4.86656040e-01],\n",
" [ 4.78675216e-01],\n",
" [ 4.63450849e-01],\n",
" [ 4.78642941e-01],\n",
" [-5.04807711e-01],\n",
" [ 4.72376823e-01],\n",
" [ 5.04851758e-01],\n",
" [-4.75505918e-01],\n",
" [ 5.04856586e-01],\n",
" [ 5.04849017e-01],\n",
" [ 4.73896414e-01],\n",
" [ 5.04803658e-01],\n",
" [ 4.65696543e-01],\n",
" [-4.75109488e-01],\n",
" [-4.84716296e-01],\n",
" [-4.82673854e-01],\n",
" [-5.04828036e-01],\n",
" [-4.82922703e-01],\n",
" [-4.74735767e-01],\n",
" [ 4.76470083e-01],\n",
" [-4.74129856e-01],\n",
" [-4.67900127e-01],\n",
" [-5.04822850e-01],\n",
" [-4.77026075e-01],\n",
" [ 4.84468341e-01],\n",
" [ 4.75914717e-01],\n",
" [-4.69322681e-01],\n",
" [-4.79369819e-01],\n",
" [-4.73021626e-01],\n",
" [ 4.77468073e-01],\n",
" [ 5.04799247e-01],\n",
" [ 4.73501444e-01],\n",
" [ 4.77092564e-01],\n",
" [ 4.74903047e-01],\n",
" [ 4.64455873e-01],\n",
" [-4.74970967e-01],\n",
" [ 4.76718366e-01],\n",
" [-5.04804611e-01],\n",
" [-4.72296417e-01],\n",
" [ 5.04768193e-01],\n",
" [ 4.85322595e-01],\n",
" [-5.04860520e-01],\n",
" [ 5.04836917e-01],\n",
" [ 4.70947295e-01],\n",
" [ 4.75462735e-01],\n",
" [ 4.79784906e-01],\n",
" [ 4.77948338e-01],\n",
" [ 4.75362688e-01],\n",
" [ 5.04798710e-01],\n",
" [-5.04820824e-01],\n",
" [-4.81628805e-01],\n",
" [-4.71553355e-01],\n",
" [ 4.70683396e-01],\n",
" [-5.04853904e-01],\n",
" [ 4.68065441e-01],\n",
" [ 5.04831374e-01],\n",
" [ 4.78038251e-01],\n",
" [ 4.75826532e-01],\n",
" [ 5.04855931e-01],\n",
" [ 5.03943205e-01],\n",
" [-2.45599379e-03],\n",
" [ 4.73539799e-01],\n",
" [-4.75195169e-01],\n",
" [-5.04856825e-01],\n",
" [ 5.04774928e-01],\n",
" [ 1.11883745e-01],\n",
" [ 4.77893203e-01],\n",
" [ 4.68741715e-01],\n",
" [ 4.79511768e-01],\n",
" [-4.78091866e-01],\n",
" [-4.70777363e-01],\n",
" [ 4.74244267e-01],\n",
" [ 5.04789829e-01],\n",
" [-4.83687103e-01],\n",
" [-5.04752696e-01],\n",
" [ 4.75559562e-01],\n",
" [ 4.74621952e-01],\n",
" [-4.87164825e-01],\n",
" [-5.04829168e-01],\n",
" [ 5.04815757e-01],\n",
" [-4.90391821e-01],\n",
" [-4.68300521e-01],\n",
" [-4.67967004e-01],\n",
" [ 5.04820704e-01],\n",
" [ 2.23571993e-02],\n",
" [-4.72705662e-01],\n",
" [-4.66774702e-01],\n",
" [-4.77931947e-01],\n",
" [ 5.04782379e-01],\n",
" [ 4.75416005e-01],\n",
" [ 5.04854858e-01],\n",
" [ 5.04825830e-01],\n",
" [-4.73938853e-01],\n",
" [ 4.71472412e-01],\n",
" [-4.69849199e-01],\n",
" [ 5.04805148e-01],\n",
" [-4.73442256e-01],\n",
" [-5.04803061e-01],\n",
" [-5.04784584e-01],\n",
" [-4.77962017e-01],\n",
" [-4.72930998e-01],\n",
" [ 5.04825056e-01],\n",
" [ 4.75001872e-01],\n",
" [-4.77844417e-01],\n",
" [-4.69303727e-01],\n",
" [ 4.82429415e-01],\n",
" [ 4.70820099e-01],\n",
" [ 5.04818201e-01],\n",
" [-5.04762232e-01],\n",
" [ 4.78444785e-01],\n",
" [ 4.84044403e-01],\n",
" [ 1.10305548e-01],\n",
" [-4.72621500e-01],\n",
" [-4.72007573e-01],\n",
" [-4.69124794e-01],\n",
" [ 4.82611150e-01],\n",
" [-5.04812717e-01]], dtype=float32)}, 'Dense_3': {'bias': Array([ 0.00000000e+00, 0.00000000e+00, 1.33985464e-04, 0.00000000e+00,\n",
" 1.72092405e-04, 0.00000000e+00, 1.10953239e-04, 0.00000000e+00,\n",
" -7.64621655e-04, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00,\n",
" -2.41837231e-04, 0.00000000e+00, 1.13354428e-04, 3.29057017e-04,\n",
" 2.16200497e-04, 2.19336202e-04, -3.66769207e-04, -4.79893264e-04,\n",
" 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00,\n",
" -1.69424180e-04, -4.80763149e-04, -2.22473827e-05, 0.00000000e+00,\n",
" 0.00000000e+00, 0.00000000e+00, 2.85213537e-05, -2.57758162e-04,\n",
" 0.00000000e+00, -7.53246495e-05, 0.00000000e+00, 0.00000000e+00,\n",
" 7.56459194e-04, 0.00000000e+00, 0.00000000e+00, 7.03259939e-05,\n",
" -1.14754995e-03, 1.92435517e-04, 0.00000000e+00, 0.00000000e+00,\n",
" 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, -2.27750847e-04,\n",
" -9.26916346e-06, 0.00000000e+00, -1.29773716e-05, -2.41517424e-04,\n",
" 0.00000000e+00, 1.77495138e-04, 6.55367854e-04, 0.00000000e+00,\n",
" 0.00000000e+00, 1.65232050e-04, 4.73026412e-05, 0.00000000e+00,\n",
" 0.00000000e+00, -1.73691460e-05, 0.00000000e+00, 0.00000000e+00,\n",
" 0.00000000e+00, 0.00000000e+00, -8.86134421e-06, 0.00000000e+00,\n",
" 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 3.70853086e-04,\n",
" -5.84304449e-04, 1.24640821e-04, 0.00000000e+00, -1.71510528e-05,\n",
" -1.06271233e-04, 4.95114073e-04, 0.00000000e+00, 0.00000000e+00,\n",
" -9.10749368e-05, -6.45977125e-05, -2.22136936e-04, 0.00000000e+00,\n",
" 0.00000000e+00, 0.00000000e+00, -3.36646590e-05, 0.00000000e+00,\n",
" 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 9.56642965e-04,\n",
" 0.00000000e+00, 0.00000000e+00, -1.40761127e-04, 0.00000000e+00,\n",
" 0.00000000e+00, 3.49420065e-04, 9.81494231e-05, 0.00000000e+00,\n",
" -3.01860314e-06, 4.25145874e-04, 0.00000000e+00, -2.97043298e-04,\n",
" 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00,\n",
" 0.00000000e+00, -4.22585785e-04, 3.35624827e-05, -1.63179357e-04,\n",
" -3.85784428e-04, 0.00000000e+00, 0.00000000e+00, -1.18570577e-04,\n",
" 0.00000000e+00, 4.95775254e-04, 0.00000000e+00, 0.00000000e+00,\n",
" 0.00000000e+00, 1.57581700e-04, 2.71000172e-05, 0.00000000e+00,\n",
" 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, -3.49011447e-04,\n",
" 0.00000000e+00, 2.14735373e-05, 0.00000000e+00, 0.00000000e+00,\n",
" 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00,\n",
" 0.00000000e+00, 1.23570091e-03, 4.56354406e-04, -5.37516189e-06,\n",
" 0.00000000e+00, -4.59517993e-04, 0.00000000e+00, -1.05757033e-03,\n",
" -8.03241505e-07, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00,\n",
" -8.58970961e-05, 0.00000000e+00, 0.00000000e+00, -8.31345751e-05,\n",
" 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, -1.75031179e-04,\n",
" 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 3.40558800e-05,\n",
" 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00,\n",
" 4.68007347e-04, 0.00000000e+00, -6.02232467e-05, 7.55003784e-05,\n",
" 0.00000000e+00, 1.04056271e-04, -4.94510285e-04, 8.19228473e-04,\n",
" 0.00000000e+00, -2.76178849e-04, -4.28266299e-04, 0.00000000e+00,\n",
" 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, -1.01641235e-04,\n",
" 7.85850134e-05, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00,\n",
" -1.81269148e-04, 0.00000000e+00, -1.07560321e-04, 3.96017676e-05,\n",
" 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00,\n",
" 5.02542243e-04, 0.00000000e+00, -1.22958256e-04, 0.00000000e+00,\n",
" 0.00000000e+00, -5.88585157e-04, 0.00000000e+00, -4.56086855e-04,\n",
" 3.73370094e-05, 0.00000000e+00, 0.00000000e+00, -1.42131088e-04,\n",
" 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 5.83865003e-05,\n",
" 0.00000000e+00, -7.49289902e-05, 0.00000000e+00, -6.43308813e-05,\n",
" -5.08234507e-06, 0.00000000e+00, 0.00000000e+00, -7.32544358e-05,\n",
" 3.86106731e-05, -1.97132340e-05, -3.74409021e-04, 0.00000000e+00,\n",
" 0.00000000e+00, -1.13278977e-04, 0.00000000e+00, 0.00000000e+00,\n",
" 1.05968058e-04, 0.00000000e+00, 1.55918504e-04, -8.26295363e-05,\n",
" -2.53444654e-04, -4.88312908e-05, -3.71871050e-04, 0.00000000e+00,\n",
" -2.51845704e-05, 0.00000000e+00, 0.00000000e+00, -1.95649074e-04,\n",
" -5.55169863e-05, 3.69632644e-08, 0.00000000e+00, -7.79392940e-05,\n",
" 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00,\n",
" 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, -4.48481238e-04,\n",
" 0.00000000e+00, 6.39237842e-05, -1.48704552e-04, 0.00000000e+00,\n",
" 1.45096536e-04, 1.64957572e-04, 0.00000000e+00, -2.98823102e-06], dtype=float32), 'kernel': Array([[-0.02561163, 0.03399104, -0.06704379, ..., -0.12532048,\n",
" -0.02462031, 0.08065256],\n",
" [-0.12416931, -0.139428 , -0.13583477, ..., -0.1480573 ,\n",
" 0.00178415, 0.02530298],\n",
" [-0.09367059, -0.12599796, 0.0561337 , ..., 0.01869138,\n",
" 0.0979134 , -0.08274377],\n",
" ...,\n",
" [ 0.00176744, -0.04548926, 0.00608217, ..., -0.04934197,\n",
" 0.06005816, -0.12460606],\n",
" [ 0.08490104, 0.01121706, -0.09934874, ..., 0.04335562,\n",
" 0.1742473 , -0.0600209 ],\n",
" [-0.00646635, 0.03393729, -0.01265469, ..., -0.04704732,\n",
" 0.08156815, 0.05526903]], dtype=float32)}, 'Dense_4': {'bias': Array([-0.00419973, 0.02144877, 0.00450037, -0.01710127, -0.00333009,\n",
" 0.00356246, -0.02329435, -0.00337948, 0.01743394, -0.01690184,\n",
" -0.00378336, -0.00096494, -0.01055289, -0.01592071, -0.00461461,\n",
" 0.00325724, 0.0006841 , -0.0026403 , 0.01686813, 0.00419823,\n",
" -0.00299166, -0.01346661, -0.00564638, 0.00023601, 0.0108557 ,\n",
" 0.00666074, 0.01288243, -0.0186079 , 0.00200332, -0.01379452,\n",
" -0.01773283, 0.01165453, 0.01014983, 0.00133958, -0.00165299,\n",
" 0.01635987, 0.01019435, 0.0065489 , -0.00037118, -0.00397999,\n",
" 0.00284004, 0.00067637, 0.01627364, -0.0078299 , 0.01401774,\n",
" -0.01573489, 0.00123845, 0.01879427, -0.00331776, -0.01645748,\n",
" 0.01143804, 0.00324304, -0.01758391, 0.01165725, -0.00013819,\n",
" -0.00966081, -0.00401079, -0.01114468, 0.01449754, 0.01219868,\n",
" -0.00610742, -0.01529384, -0.00638515, 0.0115498 , 0.00018502,\n",
" -0.00630513, -0.01774968, 0.01080462, 0.00985269, 0.00329219,\n",
" -0.00888223, 0.00862635, -0.00417064, -0.01710633, -0.00388957,\n",
" -0.00096734, -0.00848989, -0.00846955, 0.00176544, -0.00913477,\n",
" -0.01676521, 0.01897634, -0.01933195, -0.02170036, 0.00382782,\n",
" 0.01387727, 0.00211742, 0.00045132, -0.00158703, -0.01627019,\n",
" -0.01727021, -0.00617373, 0.01208867, 0.01809805, -0.0025409 ,\n",
" 0.00676317, -0.01816405, -0.01505812, 0.00675633, 0.00561204,\n",
" 0.00952907, 0.00523477, -0.00641702, -0.00888471, 0.01043094,\n",
" -0.02301796, -0.00906393, -0.02145688, -0.00183525, 0.0053666 ,\n",
" -0.00537894, 0.01132864, 0.00205557, 0.00015121, -0.00068008,\n",
" 0.00564605, 0.00402641, 0.01573794, -0.00125398, -0.01196605,\n",
" 0.02083901, 0.001355 , -0.00012601, -0.00906368, -0.00667637,\n",
" 0.00882754, 0.005579 , 0.0020642 , -0.02276072, -0.00197584,\n",
" -0.02187258, 0.00256457, 0.01032818, 0.00408343, -0.0038473 ,\n",
" 0.00340744, -0.00544693, -0.00072757, -0.00419619, -0.01125627,\n",
" -0.01129378, 0.01304334, -0.00127827, -0.01159526, -0.00451869,\n",
" 0.01206874, 0.0121213 , 0.01013233, -0.00771143, 0.00406143,\n",
" 0.00722241, 0.00493179, 0.00324648, 0.0012184 , 0.00451836,\n",
" 0.00074543, 0.002475 , -0.0102218 , -0.00616384, -0.00154909,\n",
" 0.00523963, 0.0078449 , 0.00397785, -0.00148335, 0.01821327,\n",
" -0.00392404, 0.01884935, -0.00098688, 0.02122537, 0.00128569,\n",
" -0.00076967, -0.01500759, -0.00990747, -0.00027101, 0.00445222,\n",
" -0.00705703, 0.004314 , -0.00305626, -0.00323131, 0.02635842,\n",
" 0.00116516, -0.0139756 , -0.01458777, -0.00274291, 0.00092935,\n",
" 0.0023365 , 0.01803236, 0.00729533, -0.01116792, -0.00257845,\n",
" 0.00634304, 0.00542783, -0.00388852, -0.01765396, -0.00594904,\n",
" -0.00408894, -0.00422952, -0.01045187, 0.00503171, 0.00448202,\n",
" -0.00288425, 0.01044372, -0.00535529, -0.00441791, 0.00134603,\n",
" 0.00075145, -0.00795183, 0.00750755, 0.0156558 , 0.00568503,\n",
" -0.0044635 , 0.00360375, -0.00843096, 0.01188838, -0.02269647,\n",
" -0.0022597 , -0.02019465, 0.00060354, 0.01265363, 0.00845452,\n",
" 0.00879921, 0.00807706, 0.01438782, 0.00859368, 0.00261331,\n",
" -0.02067412, -0.01014025, 0.00590534, 0.01850619, -0.01428847,\n",
" -0.0206866 , -0.00263355, 0.0032291 , -0.01321626, 0.01776856,\n",
" -0.01769381, -0.00120978, 0.0125807 , -0.00196308, -0.00033226,\n",
" 0.00408021, 0.00070809, -0.01705818, -0.00365081, 0.01320496,\n",
" 0.00047279, 0.02105755, -0.01047429, -0.00052492, -0.01004261,\n",
" 0.00748653, 0.00048579, -0.01150925, 0.00665161, -0.01538913,\n",
" 0.01217959], dtype=float32), 'kernel': Array([[ 0.05015327, -0.03041644, -0.03295113, ..., 0.04861935,\n",
" 0.04714565, -0.00957593],\n",
" [-0.07399511, 0.13526867, -0.09466655, ..., -0.06253374,\n",
" -0.08226889, -0.1233295 ],\n",
" [-0.26905268, 0.11402693, 0.00223675, ..., -0.14415021,\n",
" 0.09161562, 0.03695163],\n",
" ...,\n",
" [ 0.04454683, 0.0817698 , -0.10512208, ..., -0.15175393,\n",
" 0.06272368, -0.07536803],\n",
" [-0.14763582, -0.20567636, -0.06718701, ..., 0.06949499,\n",
" -0.09244625, -0.01560377],\n",
" [ 0.17783955, -0.02452615, -0.08177213, ..., 0.11738463,\n",
" 0.05239161, 0.10596669]], dtype=float32)}, 'Dense_5': {'bias': Array([0.0035811], dtype=float32), 'kernel': Array([[ 2.70820758e-03],\n",
" [ 1.22034714e-01],\n",
" [ 2.82488875e-02],\n",
" [ 1.10054217e-01],\n",
" [ 2.88612861e-03],\n",
" [ 1.00878350e-01],\n",
" [-9.54338387e-02],\n",
" [-5.38817490e-04],\n",
" [-7.46907145e-02],\n",
" [ 1.01497479e-01],\n",
" [-2.39448133e-03],\n",
" [-5.07097691e-02],\n",
" [ 2.44271546e-03],\n",
" [-5.56524359e-02],\n",
" [-2.00833529e-04],\n",
" [-2.44829943e-03],\n",
" [ 5.20256609e-02],\n",
" [ 4.98748720e-02],\n",
" [-4.17549051e-02],\n",
" [ 7.25976154e-02],\n",
" [ 1.93015598e-02],\n",
" [ 3.05791646e-02],\n",
" [-3.93271074e-02],\n",
" [-2.87619396e-03],\n",
" [-7.26844668e-02],\n",
" [ 4.09820164e-03],\n",
" [-2.47842744e-02],\n",
" [ 2.37656245e-03],\n",
" [-2.64878366e-02],\n",
" [ 1.08805992e-01],\n",
" [ 7.18410909e-02],\n",
" [ 8.89061242e-02],\n",
" [ 3.34629901e-02],\n",
" [-5.00766002e-02],\n",
" [-7.41747692e-02],\n",
" [ 5.26316576e-02],\n",
" [ 2.47310214e-02],\n",
" [ 2.40735384e-03],\n",
" [ 2.28020432e-03],\n",
" [ 1.67884994e-02],\n",
" [ 4.98004928e-02],\n",
" [-2.18698755e-02],\n",
" [ 4.03015651e-02],\n",
" [-3.65091823e-02],\n",
" [-3.11408862e-02],\n",
" [ 2.81865820e-02],\n",
" [-4.60361242e-02],\n",
" [-1.43801376e-01],\n",
" [-2.95780157e-03],\n",
" [-3.06024291e-02],\n",
" [ 5.84711097e-02],\n",
" [-6.26730844e-02],\n",
" [-5.78055270e-02],\n",
" [-3.30861844e-02],\n",
" [ 6.33575916e-02],\n",
" [ 2.36342289e-03],\n",
" [-1.09188415e-01],\n",
" [ 2.74285823e-02],\n",
" [ 9.99198481e-02],\n",
" [-2.37722322e-02],\n",
" [ 1.54693760e-02],\n",
" [ 3.51395545e-04],\n",
" [-2.49036914e-03],\n",
" [-2.43238173e-03],\n",
" [-2.71108770e-03],\n",
" [-2.81512993e-03],\n",
" [ 7.52533004e-02],\n",
" [-2.30673188e-03],\n",
" [-2.68176068e-02],\n",
" [ 2.34641554e-03],\n",
" [ 6.34463802e-02],\n",
" [-2.49406579e-03],\n",
" [-1.26433372e-01],\n",
" [ 4.81917374e-02],\n",
" [ 2.71963212e-03],\n",
" [ 6.83157369e-02],\n",
" [ 2.66032293e-03],\n",
" [-2.59765540e-03],\n",
" [-1.02545246e-01],\n",
" [-2.67983172e-02],\n",
" [-1.20402068e-01],\n",
" [ 8.17263685e-03],\n",
" [ 3.80963385e-02],\n",
" [-1.16418108e-01],\n",
" [ 6.50902614e-02],\n",
" [ 3.16597298e-02],\n",
" [-1.00745645e-03],\n",
" [ 2.42591905e-03],\n",
" [ 8.84267762e-02],\n",
" [-1.23421356e-01],\n",
" [-8.15720484e-02],\n",
" [-2.29836116e-03],\n",
" [-4.96123694e-02],\n",
" [-9.97869819e-02],\n",
" [ 1.05882205e-01],\n",
" [ 2.38090963e-03],\n",
" [-1.48605332e-01],\n",
" [-6.92568123e-02],\n",
" [-2.40378664e-03],\n",
" [ 2.89715417e-02],\n",
" [ 4.53399196e-02],\n",
" [-2.35003955e-03],\n",
" [ 2.71559134e-03],\n",
" [ 3.02665378e-03],\n",
" [-2.77516176e-03],\n",
" [ 9.67895836e-02],\n",
" [-2.70048380e-02],\n",
" [ 9.07058567e-02],\n",
" [ 6.72250465e-02],\n",
" [ 1.13155596e-01],\n",
" [-6.28051311e-02],\n",
" [ 3.88142392e-02],\n",
" [-2.95326184e-03],\n",
" [ 3.01691471e-03],\n",
" [-4.91913222e-02],\n",
" [-4.36057560e-02],\n",
" [-2.31865980e-03],\n",
" [-1.59075726e-02],\n",
" [-2.36599031e-03],\n",
" [-5.73587306e-02],\n",
" [-6.69424832e-02],\n",
" [-2.31792103e-03],\n",
" [-1.25058293e-02],\n",
" [ 2.36691907e-03],\n",
" [-3.62988077e-02],\n",
" [-7.64152908e-04],\n",
" [-8.65145922e-02],\n",
" [ 6.99884892e-02],\n",
" [-8.82585496e-02],\n",
" [ 6.66770502e-04],\n",
" [-3.02969292e-02],\n",
" [ 5.61803654e-02],\n",
" [-2.67857849e-03],\n",
" [-6.41904399e-02],\n",
" [-2.35566939e-03],\n",
" [-8.04408118e-02],\n",
" [-2.41194596e-03],\n",
" [-2.95872707e-02],\n",
" [ 2.12724190e-04],\n",
" [ 2.06517652e-02],\n",
" [-2.09865719e-02],\n",
" [ 4.59476970e-02],\n",
" [-9.11728367e-02],\n",
" [-2.42488831e-03],\n",
" [ 2.31604790e-03],\n",
" [ 3.38213146e-02],\n",
" [ 2.74549965e-02],\n",
" [-2.82595307e-03],\n",
" [-1.53586334e-02],\n",
" [-7.60907307e-02],\n",
" [ 5.70272142e-03],\n",
" [-2.08155867e-02],\n",
" [-1.59730781e-02],\n",
" [ 6.83187842e-02],\n",
" [ 2.33819662e-03],\n",
" [-2.44431687e-03],\n",
" [ 2.39364873e-03],\n",
" [ 1.71745918e-03],\n",
" [-1.17861658e-01],\n",
" [ 1.97865870e-02],\n",
" [-3.71903144e-02],\n",
" [-6.03415482e-02],\n",
" [-2.15047058e-02],\n",
" [ 1.00045927e-01],\n",
" [ 2.44046352e-03],\n",
" [ 3.01187718e-03],\n",
" [-3.96093018e-02],\n",
" [ 2.33602617e-03],\n",
" [-6.39655069e-02],\n",
" [-2.43620761e-02],\n",
" [-2.40100385e-03],\n",
" [ 4.40300182e-02],\n",
" [-6.22994006e-02],\n",
" [ 7.52893537e-02],\n",
" [-2.30918289e-03],\n",
" [ 6.02973588e-02],\n",
" [-1.56369805e-02],\n",
" [ 9.72255543e-02],\n",
" [-8.82886425e-02],\n",
" [ 3.21217142e-02],\n",
" [-2.34361761e-03],\n",
" [-9.81356762e-03],\n",
" [-8.47740620e-02],\n",
" [ 1.00507773e-01],\n",
" [ 2.28485861e-03],\n",
" [ 2.35938188e-03],\n",
" [ 5.41816652e-02],\n",
" [-5.46566024e-02],\n",
" [ 2.98515125e-03],\n",
" [ 2.35056761e-03],\n",
" [-1.48700150e-02],\n",
" [ 6.53233454e-02],\n",
" [-2.33025430e-03],\n",
" [ 5.09883724e-02],\n",
" [-3.09496559e-02],\n",
" [ 2.34453776e-03],\n",
" [ 5.78722656e-02],\n",
" [-1.19768091e-01],\n",
" [ 1.38532463e-02],\n",
" [-3.57557237e-02],\n",
" [ 2.64675054e-03],\n",
" [-1.10347271e-01],\n",
" [ 6.65369555e-02],\n",
" [-4.75614406e-02],\n",
" [-4.35392261e-02],\n",
" [-1.53100304e-02],\n",
" [-5.26298769e-02],\n",
" [-2.31761602e-03],\n",
" [-4.11217138e-02],\n",
" [-4.69574817e-02],\n",
" [-2.68430705e-03],\n",
" [-9.60814878e-02],\n",
" [ 3.27776968e-02],\n",
" [-9.18827392e-03],\n",
" [ 6.88406900e-02],\n",
" [ 1.17949797e-02],\n",
" [ 1.17942311e-01],\n",
" [-2.40394427e-03],\n",
" [ 7.12209269e-02],\n",
" [ 1.25106133e-03],\n",
" [-2.73891375e-03],\n",
" [ 4.17114347e-02],\n",
" [-3.16448919e-02],\n",
" [ 6.02545952e-05],\n",
" [-2.49948353e-03],\n",
" [ 9.78429690e-02],\n",
" [ 4.67571802e-02],\n",
" [-2.43049371e-03],\n",
" [-4.36916687e-02],\n",
" [ 2.45240722e-02],\n",
" [-6.00878224e-02],\n",
" [ 2.69257021e-03],\n",
" [-7.64835509e-04],\n",
" [ 6.07808419e-02],\n",
" [-7.81335831e-02],\n",
" [-8.25816095e-02],\n",
" [-2.52528535e-03],\n",
" [ 2.51530146e-04],\n",
" [-2.75908224e-03],\n",
" [-4.23399769e-02],\n",
" [-6.91752136e-02],\n",
" [-6.54896572e-02],\n",
" [-9.98401418e-02],\n",
" [ 4.79688719e-02],\n",
" [ 9.98601913e-02],\n",
" [ 5.44612110e-02],\n",
" [ 1.55163601e-01],\n",
" [ 2.63293390e-03],\n",
" [ 9.95034003e-04],\n",
" [-4.56284322e-02],\n",
" [ 2.65756017e-03],\n",
" [-2.34728237e-03],\n",
" [ 1.75290972e-01],\n",
" [ 1.01475142e-01],\n",
" [-1.21499598e-01],\n",
" [-2.89544137e-03]], dtype=float32)}, 'log_std': Array([-4.318472], dtype=float32)}}, tx=GradientTransformationExtraArgs(init=<function chain.<locals>.init_fn at 0x796c5c2a2840>, update=<function chain.<locals>.update_fn at 0x796c5c2a2a20>), opt_state=(EmptyState(), (ScaleByAdamState(count=Array(1874688, dtype=int32), mu={'params': {'Dense_0': {'bias': Array([ 6.e-45, 0.e+00, 0.e+00, 0.e+00, -6.e-45, 0.e+00, -6.e-45,\n",
" 6.e-45, -6.e-45, 0.e+00, -6.e-45, 0.e+00, 0.e+00, -6.e-45,\n",
" 0.e+00, 0.e+00, -6.e-45, 6.e-45, 0.e+00, 6.e-45, 0.e+00,\n",
" 6.e-45, 0.e+00, -6.e-45, 0.e+00, 6.e-45, -6.e-45, 6.e-45,\n",
" 0.e+00, 0.e+00, 0.e+00, 0.e+00, 0.e+00, 0.e+00, 0.e+00,\n",
" 6.e-45, 6.e-45, 0.e+00, 6.e-45, 0.e+00, 0.e+00, 0.e+00,\n",
" 0.e+00, 0.e+00, 0.e+00, 6.e-45, 0.e+00, 0.e+00, 0.e+00,\n",
" -6.e-45, 0.e+00, 0.e+00, 0.e+00, 0.e+00, 6.e-45, -6.e-45,\n",
" 6.e-45, 0.e+00, 0.e+00, 6.e-45, -6.e-45, 6.e-45, -6.e-45,\n",
" 6.e-45, 0.e+00, 0.e+00, 0.e+00, -6.e-45, 6.e-45, 0.e+00,\n",
" 0.e+00, 0.e+00, -6.e-45, 0.e+00, -6.e-45, 0.e+00, 0.e+00,\n",
" 6.e-45, -6.e-45, -6.e-45, 6.e-45, -6.e-45, 0.e+00, -6.e-45,\n",
" 6.e-45, 0.e+00, 0.e+00, 0.e+00, 6.e-45, 0.e+00, 6.e-45,\n",
" 0.e+00, 0.e+00, 0.e+00, 0.e+00, -6.e-45, 0.e+00, 0.e+00,\n",
" -6.e-45, 6.e-45, -6.e-45, 6.e-45, 0.e+00, 0.e+00, -6.e-45,\n",
" 0.e+00, 0.e+00, 0.e+00, 6.e-45, 0.e+00, 0.e+00, 0.e+00,\n",
" 0.e+00, 0.e+00, 0.e+00, 6.e-45, -6.e-45, -6.e-45, 6.e-45,\n",
" -6.e-45, 0.e+00, 6.e-45, -6.e-45, 0.e+00, -6.e-45, 0.e+00,\n",
" 0.e+00, 6.e-45, 0.e+00, 0.e+00, 6.e-45, 6.e-45, -6.e-45,\n",
" -6.e-45, -6.e-45, -6.e-45, 0.e+00, 6.e-45, 6.e-45, 6.e-45,\n",
" 0.e+00, -6.e-45, -6.e-45, -6.e-45, -6.e-45, 0.e+00, 0.e+00,\n",
" 0.e+00, 6.e-45, 0.e+00, 0.e+00, 6.e-45, 6.e-45, -6.e-45,\n",
" -6.e-45, 0.e+00, 6.e-45, 0.e+00, 0.e+00, 0.e+00, 0.e+00,\n",
" 0.e+00, 0.e+00, 0.e+00, 0.e+00, -6.e-45, -6.e-45, 0.e+00,\n",
" 0.e+00, 0.e+00, 6.e-45, 0.e+00, 0.e+00, -6.e-45, 0.e+00,\n",
" 0.e+00, 0.e+00, 0.e+00, 0.e+00, -6.e-45, 6.e-45, 0.e+00,\n",
" -6.e-45, 0.e+00, -6.e-45, 0.e+00, 0.e+00, 0.e+00, -6.e-45,\n",
" 6.e-45, 0.e+00, 0.e+00, 0.e+00, 6.e-45, -6.e-45, 6.e-45,\n",
" -6.e-45, 6.e-45, -6.e-45, -6.e-45, 6.e-45, 0.e+00, -6.e-45,\n",
" 0.e+00, -6.e-45, 0.e+00, -6.e-45, 6.e-45, 0.e+00, 0.e+00,\n",
" 6.e-45, -6.e-45, -6.e-45, 0.e+00, 6.e-45, 6.e-45, 0.e+00,\n",
" 6.e-45, 6.e-45, 0.e+00, 6.e-45, -6.e-45, -6.e-45, 6.e-45,\n",
" 0.e+00, 0.e+00, 6.e-45, 0.e+00, -6.e-45, -6.e-45, 6.e-45,\n",
" -6.e-45, 0.e+00, 0.e+00, 0.e+00, 0.e+00, 0.e+00, 0.e+00,\n",
" 0.e+00, 0.e+00, 0.e+00, 0.e+00, 0.e+00, 0.e+00, 0.e+00,\n",
" 0.e+00, 0.e+00, 0.e+00, 0.e+00, 0.e+00, -6.e-45, 0.e+00,\n",
" 0.e+00, 6.e-45, 0.e+00, 0.e+00], dtype=float32), 'kernel': Array([[-6.e-45, 0.e+00, 0.e+00, ..., 6.e-45, 0.e+00, 0.e+00],\n",
" [ 6.e-45, 0.e+00, 0.e+00, ..., 6.e-45, 0.e+00, 0.e+00],\n",
" [-6.e-45, 0.e+00, 0.e+00, ..., -6.e-45, 0.e+00, 0.e+00],\n",
" ...,\n",
" [ 6.e-45, 0.e+00, 0.e+00, ..., 6.e-45, 0.e+00, 0.e+00],\n",
" [ 6.e-45, 0.e+00, 0.e+00, ..., 6.e-45, 0.e+00, 0.e+00],\n",
" [ 6.e-45, 0.e+00, 0.e+00, ..., 6.e-45, 0.e+00, 0.e+00]], dtype=float32)}, 'Dense_1': {'bias': Array([ 1.03541664e-08, -2.25503545e-08, 1.09754401e-08, 2.26793979e-08,\n",
" -1.08045732e-08, -2.55994550e-08, -2.31924577e-08, 1.04921165e-08,\n",
" 2.39457876e-08, -2.38241267e-08, -9.84679271e-09, 2.40475533e-08,\n",
" 2.26209060e-08, -9.62008251e-09, -9.19785581e-09, 2.29656649e-08,\n",
" -2.29345041e-08, -2.31075994e-08, -2.23311361e-08, -2.37337971e-08,\n",
" -2.60625335e-08, -1.06845848e-08, 2.36961917e-08, 1.07474909e-08,\n",
" 2.26803287e-08, -2.44749021e-08, -1.99485872e-09, -2.37690188e-08,\n",
" -1.04099778e-08, 2.38905891e-08, -1.05689848e-08, -9.92427385e-09,\n",
" -2.47251606e-08, 2.39578704e-08, 2.53755612e-08, 9.96767202e-09,\n",
" -2.39543709e-08, -2.22608314e-08, 1.07252545e-08, 1.07611244e-08,\n",
" -2.35777389e-08, 2.34232349e-08, -2.33633735e-08, 1.01725632e-08,\n",
" -2.31241533e-08, 2.36809523e-08, 2.26009220e-08, -9.67539204e-09,\n",
" 2.40251659e-08, -2.41103955e-08, 9.48442302e-09, -2.45370337e-08,\n",
" -2.28745094e-08, -2.44033593e-08, -1.00123128e-08, 1.03061701e-08,\n",
" 2.28946764e-08, 2.24425740e-08, 2.29827357e-08, 2.25327419e-08,\n",
" -9.98236427e-09, -2.32662103e-08, -1.04185727e-08, -9.28724919e-09,\n",
" 2.14844054e-08, -2.32100703e-08, 2.35621869e-08, -2.37330582e-08,\n",
" 1.09662253e-08, -2.35303794e-08, 2.27551844e-08, 2.43550033e-08,\n",
" -9.78177273e-09, -2.48300562e-08, -2.40180125e-08, -2.29773569e-08,\n",
" 2.36496440e-08, 9.61151869e-09, -2.38107098e-08, -1.03533173e-08,\n",
" 9.93252947e-09, 2.21335767e-08, -1.06222959e-08, -2.35497382e-08,\n",
" 2.31541364e-08, 2.34322943e-08, 2.25955290e-08, -9.75304726e-09,\n",
" -1.13002869e-08, 2.26995169e-08, -2.36510296e-08, -2.32563746e-08,\n",
" -9.97940042e-09, -9.66210578e-09, -2.50858676e-08, 1.04648832e-08,\n",
" 1.07407310e-08, -2.29595720e-08, -9.87424720e-09, 2.33411086e-08,\n",
" -2.42061162e-08, -1.07653841e-08, 2.37902107e-08, -2.36694540e-08,\n",
" 2.39752147e-08, -1.02575592e-08, 2.30720971e-08, -9.81033033e-09,\n",
" -1.00816440e-08, 1.03168682e-08, -2.31944668e-08, 2.22103331e-08,\n",
" 1.12213536e-08, 2.35503119e-08, 2.34428619e-08, -2.37289548e-08,\n",
" -2.31170283e-08, -2.46132217e-08, -1.05486855e-08, 2.45457343e-08,\n",
" 8.75366180e-09, -1.06093188e-08, -2.31070718e-08, 2.34258337e-08,\n",
" -2.47319036e-08, 2.50391921e-08, -2.26980212e-08, 1.01784190e-08,\n",
" -2.39714133e-08, 2.40813680e-08, -9.70173275e-09, 2.38065390e-08,\n",
" -2.38319373e-08, 1.02583231e-08, 2.36317241e-08, 2.38402187e-08,\n",
" 9.70589653e-09, 2.37370621e-08, 2.50829686e-08, 2.45204337e-08,\n",
" -2.37158382e-08, -2.22815331e-08, -2.34159110e-08, 9.60534230e-09,\n",
" -2.38358666e-08, -1.00425810e-08, 2.32160442e-08, -1.05393099e-08,\n",
" -1.00508286e-08, -2.50335965e-08, -9.60210222e-09, -2.31566748e-08,\n",
" 2.35914435e-08, 2.21662475e-08, 2.30486279e-08, 1.07958336e-08,\n",
" 2.39797320e-08, 2.51510350e-08, -2.41677185e-08, 2.30657733e-08,\n",
" 2.26225900e-08, 1.09776863e-08, 2.32889921e-08, -2.39750744e-08,\n",
" -2.41031071e-08, 2.31204851e-08, 2.35466366e-08, 2.35021957e-08,\n",
" -2.36535733e-08, -1.00681845e-08, -9.25054877e-09, -2.26733974e-08,\n",
" -2.43106193e-08, -2.44533993e-08, 2.33814283e-08, -2.29009807e-08,\n",
" 9.55213242e-09, 2.32522748e-08, -1.05972617e-08, -2.22023715e-08,\n",
" 9.42938883e-09, -9.12538400e-09, -2.41387639e-08, -2.46479992e-08,\n",
" -2.40736604e-08, -2.44753497e-08, -2.34043007e-08, -1.05592610e-08,\n",
" 9.71530945e-09, 2.45881857e-08, 2.36805704e-08, -2.41897880e-08,\n",
" 1.04161861e-08, -1.10903278e-08, -1.01811679e-08, -2.27189627e-08,\n",
" -2.30083597e-08, -1.08696794e-08, -1.01657953e-08, 2.19482942e-07,\n",
" -2.39753302e-08, 2.40163764e-08, 1.03893054e-08, -9.03441766e-09,\n",
" -3.46478082e-08, -2.37281910e-08, -2.35396413e-08, -2.40696831e-08,\n",
" 2.33254003e-08, 2.38854891e-08, -2.38879565e-08, -9.85133752e-09,\n",
" 2.34631212e-08, 8.61502603e-09, -2.31104984e-08, -2.31271180e-08,\n",
" 2.36442457e-08, 1.15904211e-08, -1.06073630e-08, 2.39395028e-08,\n",
" 2.36320830e-08, 2.35764475e-08, -9.75345227e-09, -1.04897957e-08,\n",
" 2.49138310e-08, 2.32671695e-08, 2.36456934e-08, -1.04983400e-08,\n",
" -2.43422811e-08, -1.06175531e-08, -9.90782656e-09, 2.46703067e-08,\n",
" -2.40167761e-08, 2.36683544e-08, -1.02754383e-08, 2.26544152e-08,\n",
" 9.47397183e-09, 9.47846956e-09, 2.32374866e-08, 2.45816203e-08,\n",
" -1.06429781e-08, -2.35429987e-08, 2.28810286e-08, 2.35029525e-08,\n",
" -2.46803040e-08, -2.30708466e-08, -1.04155564e-08, 1.02375104e-08,\n",
" -2.34650717e-08, -2.39009310e-08, -3.48849483e-08, 2.34201085e-08,\n",
" 2.29198491e-08, 2.39195010e-08, -2.30075194e-08, 1.00511723e-08], dtype=float32), 'kernel': Array([[ 1.7525373e-08, -2.9312023e-08, 1.7678957e-08, ...,\n",
" 2.7208849e-08, -2.7127996e-08, 1.7897921e-08],\n",
" [ 1.0349746e-08, -2.2549184e-08, 1.0967796e-08, ...,\n",
" 2.3919497e-08, -2.2998300e-08, 1.0045669e-08],\n",
" [ 1.0349746e-08, -2.2549184e-08, 1.0967796e-08, ...,\n",
" 2.3919497e-08, -2.2998300e-08, 1.0045669e-08],\n",
" ...,\n",
" [-1.7525373e-08, 2.9312023e-08, -1.7678957e-08, ...,\n",
" -2.7208849e-08, 2.7127996e-08, -1.7897921e-08],\n",
" [-1.0349746e-08, 2.2549184e-08, -1.0967796e-08, ...,\n",
" -2.3919497e-08, 2.2998300e-08, -1.0045669e-08],\n",
" [-1.0349746e-08, 2.2549184e-08, -1.0967796e-08, ...,\n",
" -2.3919497e-08, 2.2998300e-08, -1.0045669e-08]], dtype=float32)}, 'Dense_2': {'bias': Array([-0.00109201], dtype=float32), 'kernel': Array([[-3.1509115e-03],\n",
" [-1.0919889e-03],\n",
" [-3.1509111e-03],\n",
" [ 1.0919888e-03],\n",
" [ 3.1509115e-03],\n",
" [-1.0919864e-03],\n",
" [-1.0919889e-03],\n",
" [-3.1509108e-03],\n",
" [ 1.0919885e-03],\n",
" [-1.0919881e-03],\n",
" [ 3.1509113e-03],\n",
" [ 1.0919885e-03],\n",
" [ 1.0919904e-03],\n",
" [ 3.1509104e-03],\n",
" [ 3.1509101e-03],\n",
" [ 1.0919895e-03],\n",
" [-1.0919895e-03],\n",
" [-1.0919897e-03],\n",
" [-1.0919897e-03],\n",
" [-1.0919878e-03],\n",
" [-1.0919870e-03],\n",
" [ 3.1509111e-03],\n",
" [ 1.0919881e-03],\n",
" [-3.1509092e-03],\n",
" [ 1.0919888e-03],\n",
" [-1.0919870e-03],\n",
" [-2.2210799e-07],\n",
" [-1.0919896e-03],\n",
" [ 3.1509118e-03],\n",
" [ 1.0919883e-03],\n",
" [ 3.1509104e-03],\n",
" [ 3.1509090e-03],\n",
" [-1.0919872e-03],\n",
" [ 1.0919881e-03],\n",
" [ 1.0919870e-03],\n",
" [-3.1509104e-03],\n",
" [-1.0919889e-03],\n",
" [-1.0919900e-03],\n",
" [-3.1509108e-03],\n",
" [-3.1509111e-03],\n",
" [-1.0919884e-03],\n",
" [ 1.0919883e-03],\n",
" [-1.0919888e-03],\n",
" [-3.1509113e-03],\n",
" [-1.0919895e-03],\n",
" [ 1.0919883e-03],\n",
" [ 1.0919897e-03],\n",
" [ 3.1509115e-03],\n",
" [ 1.0919882e-03],\n",
" [-1.0919881e-03],\n",
" [-3.1509097e-03],\n",
" [-1.0919867e-03],\n",
" [-1.0919886e-03],\n",
" [-1.0919882e-03],\n",
" [ 3.1509094e-03],\n",
" [-3.1509090e-03],\n",
" [ 1.0919892e-03],\n",
" [ 1.0919897e-03],\n",
" [ 1.0919898e-03],\n",
" [ 1.0919893e-03],\n",
" [ 3.1509106e-03],\n",
" [-1.0919895e-03],\n",
" [ 3.1509104e-03],\n",
" [ 3.1509111e-03],\n",
" [ 1.0919906e-03],\n",
" [-1.0919897e-03],\n",
" [ 1.0919895e-03],\n",
" [-1.0919889e-03],\n",
" [-3.1509111e-03],\n",
" [-1.0919890e-03],\n",
" [ 1.0919888e-03],\n",
" [ 1.0919878e-03],\n",
" [ 3.1509111e-03],\n",
" [-1.0919875e-03],\n",
" [-1.0919884e-03],\n",
" [-1.0919888e-03],\n",
" [ 1.0919885e-03],\n",
" [-3.1509113e-03],\n",
" [-1.0919882e-03],\n",
" [ 3.1509087e-03],\n",
" [-3.1509111e-03],\n",
" [ 1.0919902e-03],\n",
" [ 3.1509101e-03],\n",
" [-1.0919888e-03],\n",
" [ 1.0919885e-03],\n",
" [ 1.0919886e-03],\n",
" [ 1.0919897e-03],\n",
" [ 3.1509097e-03],\n",
" [ 2.6822573e-07],\n",
" [ 1.0919892e-03],\n",
" [-1.0919882e-03],\n",
" [-1.0919884e-03],\n",
" [ 3.1509104e-03],\n",
" [ 3.1509111e-03],\n",
" [-1.0919883e-03],\n",
" [-3.1509115e-03],\n",
" [-3.1509106e-03],\n",
" [-1.0919903e-03],\n",
" [ 3.1509115e-03],\n",
" [ 1.0919892e-03],\n",
" [-1.0919874e-03],\n",
" [ 3.1509111e-03],\n",
" [ 1.0919890e-03],\n",
" [-1.0919884e-03],\n",
" [ 1.0919883e-03],\n",
" [ 3.1509104e-03],\n",
" [ 1.0919896e-03],\n",
" [ 3.1509099e-03],\n",
" [ 3.1509115e-03],\n",
" [-3.1509111e-03],\n",
" [-1.0919893e-03],\n",
" [ 1.0919896e-03],\n",
" [-3.1509113e-03],\n",
" [ 1.0919886e-03],\n",
" [ 1.0919884e-03],\n",
" [-1.0919890e-03],\n",
" [-1.0919896e-03],\n",
" [-1.0919884e-03],\n",
" [ 3.1509111e-03],\n",
" [ 1.0919870e-03],\n",
" [-3.1509108e-03],\n",
" [ 3.1509106e-03],\n",
" [-1.0919893e-03],\n",
" [ 1.0919882e-03],\n",
" [-1.0919883e-03],\n",
" [ 1.0919871e-03],\n",
" [-1.0919899e-03],\n",
" [-3.1509111e-03],\n",
" [-1.0919888e-03],\n",
" [ 1.0919874e-03],\n",
" [ 1.0918307e-03],\n",
" [ 1.0919888e-03],\n",
" [-1.0919881e-03],\n",
" [-3.1509115e-03],\n",
" [ 1.0919896e-03],\n",
" [ 1.0919888e-03],\n",
" [-3.1509108e-03],\n",
" [ 1.0919877e-03],\n",
" [ 1.0919876e-03],\n",
" [ 1.0919874e-03],\n",
" [-1.0919891e-03],\n",
" [-1.0919896e-03],\n",
" [-1.0919885e-03],\n",
" [-3.1509115e-03],\n",
" [-1.0919883e-03],\n",
" [ 3.1509106e-03],\n",
" [ 1.0919888e-03],\n",
" [ 3.1509122e-03],\n",
" [ 3.1509111e-03],\n",
" [-1.0919870e-03],\n",
" [ 3.1509111e-03],\n",
" [-1.0919883e-03],\n",
" [ 1.0919889e-03],\n",
" [ 1.0919902e-03],\n",
" [ 1.0919889e-03],\n",
" [-3.1509106e-03],\n",
" [ 1.0919881e-03],\n",
" [ 1.0919869e-03],\n",
" [-1.0919878e-03],\n",
" [ 1.0919889e-03],\n",
" [ 1.0919891e-03],\n",
" [-3.1509099e-03],\n",
" [ 1.0919886e-03],\n",
" [-1.0919890e-03],\n",
" [-1.0919885e-03],\n",
" [ 1.0919881e-03],\n",
" [ 1.0919898e-03],\n",
" [ 1.0919888e-03],\n",
" [-1.0919883e-03],\n",
" [ 3.1509106e-03],\n",
" [ 3.1509090e-03],\n",
" [-1.0919892e-03],\n",
" [-1.0919878e-03],\n",
" [-1.0919874e-03],\n",
" [ 1.0919888e-03],\n",
" [-1.0919897e-03],\n",
" [-3.1509113e-03],\n",
" [ 1.0919884e-03],\n",
" [ 3.1509115e-03],\n",
" [-1.0919906e-03],\n",
" [-3.1509111e-03],\n",
" [ 3.1509113e-03],\n",
" [-1.0919881e-03],\n",
" [-1.0919871e-03],\n",
" [-1.0919885e-03],\n",
" [-1.0919875e-03],\n",
" [-1.0919893e-03],\n",
" [ 3.1509101e-03],\n",
" [-3.1509118e-03],\n",
" [ 1.0919875e-03],\n",
" [ 1.0919888e-03],\n",
" [-1.0919884e-03],\n",
" [-3.1509111e-03],\n",
" [ 3.1509078e-03],\n",
" [ 3.1509118e-03],\n",
" [-1.0919890e-03],\n",
" [-1.0919898e-03],\n",
" [ 3.1509111e-03],\n",
" [ 3.1509111e-03],\n",
" [-1.0640444e-03],\n",
" [-1.0919881e-03],\n",
" [ 1.0919881e-03],\n",
" [-3.1509101e-03],\n",
" [ 3.1509104e-03],\n",
" [-1.0918580e-03],\n",
" [-1.0919890e-03],\n",
" [-1.0919884e-03],\n",
" [-1.0919890e-03],\n",
" [ 1.0919895e-03],\n",
" [ 1.0919879e-03],\n",
" [-1.0919888e-03],\n",
" [ 3.1509113e-03],\n",
" [ 1.0919889e-03],\n",
" [-3.1509094e-03],\n",
" [-1.0919895e-03],\n",
" [-1.0919893e-03],\n",
" [ 1.0919888e-03],\n",
" [-3.1509087e-03],\n",
" [ 3.1509111e-03],\n",
" [ 1.0919888e-03],\n",
" [ 1.0919885e-03],\n",
" [ 1.0919881e-03],\n",
" [ 3.1509111e-03],\n",
" [ 1.0918273e-03],\n",
" [ 1.0919869e-03],\n",
" [ 1.0919883e-03],\n",
" [ 1.0919891e-03],\n",
" [ 3.1509111e-03],\n",
" [-1.0919883e-03],\n",
" [ 3.1509108e-03],\n",
" [ 3.1509111e-03],\n",
" [ 1.0919874e-03],\n",
" [-1.0919878e-03],\n",
" [ 1.0919883e-03],\n",
" [ 3.1509115e-03],\n",
" [ 1.0919895e-03],\n",
" [-3.1509094e-03],\n",
" [-3.1509111e-03],\n",
" [ 1.0919889e-03],\n",
" [ 1.0919872e-03],\n",
" [ 3.1509115e-03],\n",
" [-1.0919891e-03],\n",
" [ 1.0919905e-03],\n",
" [ 1.0919883e-03],\n",
" [-1.0919881e-03],\n",
" [-1.0919878e-03],\n",
" [ 3.1509104e-03],\n",
" [-3.1509122e-03],\n",
" [-1.0919892e-03],\n",
" [-1.0919896e-03],\n",
" [-1.0918557e-03],\n",
" [ 1.0919878e-03],\n",
" [ 1.0919895e-03],\n",
" [ 1.0919883e-03],\n",
" [-1.0919893e-03],\n",
" [-3.1509108e-03]], dtype=float32)}, 'Dense_3': {'bias': Array([ 0.000000e+00, 0.000000e+00, -5.605194e-45, 0.000000e+00,\n",
" -5.605194e-45, 0.000000e+00, 5.605194e-45, 0.000000e+00,\n",
" -5.605194e-45, 0.000000e+00, 0.000000e+00, 0.000000e+00,\n",
" 5.605194e-45, 0.000000e+00, -5.605194e-45, 5.605194e-45,\n",
" 5.605194e-45, -5.605194e-45, 5.605194e-45, 5.605194e-45,\n",
" 0.000000e+00, 0.000000e+00, 0.000000e+00, 0.000000e+00,\n",
" 5.605194e-45, 5.605194e-45, 5.605194e-45, 0.000000e+00,\n",
" 0.000000e+00, 0.000000e+00, -5.605194e-45, -5.605194e-45,\n",
" 0.000000e+00, 5.605194e-45, 0.000000e+00, 0.000000e+00,\n",
" 5.605194e-45, 0.000000e+00, 0.000000e+00, -5.605194e-45,\n",
" 5.605194e-45, 5.605194e-45, 0.000000e+00, 0.000000e+00,\n",
" 0.000000e+00, 0.000000e+00, 0.000000e+00, -5.605194e-45,\n",
" 5.605194e-45, 0.000000e+00, -5.605194e-45, -5.605194e-45,\n",
" 0.000000e+00, -5.605194e-45, -5.605194e-45, 0.000000e+00,\n",
" 0.000000e+00, 5.605194e-45, 5.605194e-45, 0.000000e+00,\n",
" 0.000000e+00, 5.605194e-45, 0.000000e+00, 0.000000e+00,\n",
" 0.000000e+00, 0.000000e+00, 5.605194e-45, 0.000000e+00,\n",
" 0.000000e+00, 0.000000e+00, 0.000000e+00, 5.605194e-45,\n",
" 5.605194e-45, -5.605194e-45, 0.000000e+00, -5.605194e-45,\n",
" 5.605194e-45, -5.605194e-45, 0.000000e+00, 0.000000e+00,\n",
" -5.605194e-45, -5.605194e-45, 5.605194e-45, 0.000000e+00,\n",
" 0.000000e+00, 0.000000e+00, -5.605194e-45, 0.000000e+00,\n",
" 0.000000e+00, 0.000000e+00, 0.000000e+00, -5.605194e-45,\n",
" 0.000000e+00, 0.000000e+00, -5.605194e-45, 0.000000e+00,\n",
" 0.000000e+00, 5.605194e-45, -5.605194e-45, 0.000000e+00,\n",
" -5.605194e-45, -5.605194e-45, 0.000000e+00, -5.605194e-45,\n",
" 0.000000e+00, 0.000000e+00, 0.000000e+00, 0.000000e+00,\n",
" 0.000000e+00, 5.605194e-45, -5.605194e-45, 5.605194e-45,\n",
" 5.605194e-45, 0.000000e+00, 0.000000e+00, 5.605194e-45,\n",
" 0.000000e+00, 5.605194e-45, 0.000000e+00, 0.000000e+00,\n",
" 0.000000e+00, -5.605194e-45, -5.605194e-45, 0.000000e+00,\n",
" 0.000000e+00, 0.000000e+00, 0.000000e+00, 5.605194e-45,\n",
" 0.000000e+00, 5.605194e-45, 0.000000e+00, 0.000000e+00,\n",
" 0.000000e+00, 0.000000e+00, 0.000000e+00, 0.000000e+00,\n",
" 0.000000e+00, 5.605194e-45, 5.605194e-45, 5.605194e-45,\n",
" 0.000000e+00, 5.605194e-45, 0.000000e+00, -5.605194e-45,\n",
" -5.605194e-45, 0.000000e+00, 0.000000e+00, 0.000000e+00,\n",
" 5.157024e-20, 0.000000e+00, 0.000000e+00, 5.605194e-45,\n",
" 0.000000e+00, 0.000000e+00, 0.000000e+00, 5.605194e-45,\n",
" 0.000000e+00, 0.000000e+00, 0.000000e+00, -5.605194e-45,\n",
" 0.000000e+00, 0.000000e+00, 0.000000e+00, 0.000000e+00,\n",
" -5.605194e-45, 0.000000e+00, 5.605194e-45, 5.605194e-45,\n",
" 0.000000e+00, -5.605194e-45, -5.605194e-45, -5.605194e-45,\n",
" 0.000000e+00, -5.605194e-45, -5.605194e-45, 0.000000e+00,\n",
" 0.000000e+00, 0.000000e+00, 0.000000e+00, -5.605194e-45,\n",
" 5.605194e-45, 0.000000e+00, 0.000000e+00, 0.000000e+00,\n",
" 5.605194e-45, 0.000000e+00, 5.605194e-45, -5.605194e-45,\n",
" 0.000000e+00, 0.000000e+00, 0.000000e+00, 0.000000e+00,\n",
" 5.605194e-45, 0.000000e+00, 5.605194e-45, 0.000000e+00,\n",
" 0.000000e+00, 5.605194e-45, 0.000000e+00, 5.605194e-45,\n",
" 5.605194e-45, 0.000000e+00, 0.000000e+00, 5.605194e-45,\n",
" 0.000000e+00, 0.000000e+00, 0.000000e+00, 5.605194e-45,\n",
" 0.000000e+00, -5.605194e-45, 0.000000e+00, 5.605194e-45,\n",
" -5.605194e-45, 0.000000e+00, 0.000000e+00, 5.605194e-45,\n",
" 5.605194e-45, 5.605194e-45, -5.605194e-45, 0.000000e+00,\n",
" 0.000000e+00, -5.605194e-45, 0.000000e+00, 0.000000e+00,\n",
" -5.605194e-45, 0.000000e+00, 5.605194e-45, 5.605194e-45,\n",
" 5.605194e-45, -5.605194e-45, -5.605194e-45, 0.000000e+00,\n",
" -5.605194e-45, 0.000000e+00, 0.000000e+00, -5.605194e-45,\n",
" -5.605194e-45, -5.605194e-45, 0.000000e+00, 5.605194e-45,\n",
" 0.000000e+00, 0.000000e+00, 0.000000e+00, 0.000000e+00,\n",
" 0.000000e+00, 0.000000e+00, 0.000000e+00, 5.605194e-45,\n",
" 0.000000e+00, -5.605194e-45, -5.605194e-45, 0.000000e+00,\n",
" -5.605194e-45, -5.605194e-45, 0.000000e+00, 5.605194e-45], dtype=float32), 'kernel': Array([[ 0.e+00, 0.e+00, -6.e-45, ..., -6.e-45, 0.e+00, 0.e+00],\n",
" [ 0.e+00, 0.e+00, -6.e-45, ..., -6.e-45, 0.e+00, 0.e+00],\n",
" [ 0.e+00, 0.e+00, 6.e-45, ..., 6.e-45, 0.e+00, 0.e+00],\n",
" ...,\n",
" [ 0.e+00, 0.e+00, 6.e-45, ..., -6.e-45, 0.e+00, 6.e-45],\n",
" [ 0.e+00, 0.e+00, 6.e-45, ..., -6.e-45, 0.e+00, 6.e-45],\n",
" [ 0.e+00, 0.e+00, 6.e-45, ..., -6.e-45, 0.e+00, 6.e-45]], dtype=float32)}, 'Dense_4': {'bias': Array([-1.68129989e-11, -1.64340308e-12, -2.34251160e-12, -1.37558454e-12,\n",
" -1.79203891e-11, -1.41104142e-12, 1.81627803e-12, 3.31597380e-12,\n",
" 1.50421516e-12, -1.34772467e-12, 1.48133103e-11, 2.25605385e-12,\n",
" -1.51168019e-11, 2.41827153e-12, 1.38962897e-13, 1.51490053e-11,\n",
" -2.24216240e-12, -2.28625213e-12, 2.08522132e-12, -1.51741174e-12,\n",
" -2.21023330e-12, -2.64996055e-12, 3.19520842e-12, 1.78426666e-11,\n",
" 1.44679277e-12, -1.13836562e-11, 3.19035120e-12, -1.47042517e-11,\n",
" 2.45127920e-12, -1.34369816e-12, -1.52956304e-12, -1.85866578e-12,\n",
" -3.77237044e-12, 2.25462010e-12, 1.95828900e-12, -2.53433646e-12,\n",
" -5.05996200e-12, -1.48946688e-11, -1.41007874e-11, -4.52248005e-12,\n",
" -2.27083391e-12, 5.71240971e-12, -3.14632218e-12, 3.46597013e-12,\n",
" 2.59889853e-12, -2.84088400e-12, 2.35422771e-12, 1.23597129e-12,\n",
" 1.83519710e-11, 4.27911699e-12, -2.17041576e-12, 2.06006284e-12,\n",
" 2.36856802e-12, 2.49788818e-12, -2.06548710e-12, -1.46176300e-11,\n",
" 1.39185766e-12, -2.90129466e-12, -1.74847972e-12, 3.31357359e-12,\n",
" -4.87309065e-12, -1.75373301e-12, 1.54117448e-11, 1.50523118e-11,\n",
" 1.68066915e-11, 1.74826213e-11, -1.49217498e-12, 1.42708501e-11,\n",
" 2.40834284e-12, -1.45175174e-11, -1.56042952e-12, 1.54368792e-11,\n",
" 1.71726088e-12, -1.88417164e-12, -1.68614255e-11, -2.01780953e-12,\n",
" -1.64797481e-11, 1.60863510e-11, 1.40228150e-12, 4.78764597e-12,\n",
" 1.65638846e-12, -1.27146930e-11, -2.21389378e-12, 1.67825953e-12,\n",
" -2.20410972e-12, -3.98355524e-12, 6.19858765e-12, -1.50218865e-11,\n",
" -1.44667232e-12, 1.62698934e-12, 1.94670994e-12, 1.42166105e-11,\n",
" 1.92292298e-12, 1.36910600e-12, -1.39693411e-12, -1.47305536e-11,\n",
" 1.56167332e-12, 2.09429696e-12, 1.48727905e-11, -2.31150342e-12,\n",
" -2.81368939e-12, 1.45516429e-11, -1.68236206e-11, -1.88008775e-11,\n",
" 1.72134633e-11, -1.38423095e-12, 4.64812477e-12, -1.40174417e-12,\n",
" -2.02521160e-12, -1.38138654e-12, 2.07544984e-12, -3.25466975e-12,\n",
" 1.83271089e-11, -1.87430939e-11, 2.28413989e-12, 2.43149598e-12,\n",
" 1.43394038e-11, 4.75405045e-12, 1.46364275e-11, 2.35601903e-12,\n",
" 1.57300290e-12, 1.43365944e-11, 3.95476577e-12, -1.46400114e-11,\n",
" 2.00708374e-12, 4.72600865e-12, 1.45893584e-12, -1.99434263e-12,\n",
" 1.86900365e-12, -4.11698974e-12, 4.30520116e-12, -2.16828096e-12,\n",
" 1.65977510e-11, 1.58451019e-12, 1.45723572e-11, 1.91609771e-12,\n",
" 1.49197252e-11, 3.06157443e-12, -9.51521739e-13, -3.74928170e-12,\n",
" 5.89098518e-12, -2.77128147e-12, 1.44175232e-12, 1.50046590e-11,\n",
" -1.43273570e-11, -3.72674157e-12, -4.56247887e-12, 1.75198363e-11,\n",
" 2.90088613e-12, 1.92680854e-12, -3.59396280e-12, 2.90502583e-12,\n",
" 4.78136064e-12, -2.01775554e-12, -1.44605612e-11, 1.51254807e-11,\n",
" -1.48092580e-11, -1.06114145e-11, 1.73609868e-12, -4.02823087e-12,\n",
" 2.59967915e-12, 2.09750620e-12, 5.69491676e-12, -1.40408518e-12,\n",
" -1.51003862e-11, -1.87129860e-11, 2.14852528e-12, -1.44508615e-11,\n",
" 1.61768147e-12, 3.47535325e-12, 1.48539236e-11, -1.99395101e-12,\n",
" 2.22019104e-12, -1.50999309e-12, 1.42853993e-11, -1.62137686e-12,\n",
" 4.72423229e-12, -1.41986249e-12, 1.87225604e-12, -4.11534782e-12,\n",
" 1.45009438e-11, 1.09282982e-11, 1.87759834e-12, -1.40849919e-12,\n",
" -1.41309065e-11, -1.45973476e-11, -2.48948648e-12, 1.62470233e-12,\n",
" -1.85399040e-11, -1.45447855e-11, 3.63228111e-12, -2.03865397e-12,\n",
" 1.44151687e-11, -1.82090736e-12, 4.10953693e-12, -1.45062747e-11,\n",
" -1.63726151e-12, 1.14638854e-12, -8.45686455e-12, 2.63523339e-12,\n",
" -1.63959801e-11, 1.14046766e-13, -1.55685306e-12, 1.73313664e-12,\n",
" 2.41606431e-12, 4.78593077e-12, 2.54235955e-12, 1.43347773e-11,\n",
" 2.10130849e-12, 1.77861686e-12, 1.66376773e-11, 1.82921950e-12,\n",
" -2.86404776e-12, 7.14697355e-12, -1.55668913e-12, -4.02296859e-12,\n",
" -1.30150990e-12, 1.48738851e-11, -2.05342536e-12, -7.71668493e-12,\n",
" 1.69779156e-11, -1.82855857e-12, 2.57383134e-12, -3.70609142e-13,\n",
" 1.54659081e-11, -1.37158340e-12, -1.93308260e-12, 1.50398218e-11,\n",
" 2.00455581e-12, -3.36654337e-12, 2.31098430e-12, -1.66817029e-11,\n",
" 4.70822253e-12, -1.64905600e-12, 1.48161756e-12, 1.91981956e-12,\n",
" 1.56288871e-11, -1.54816199e-12, 1.71096418e-11, 1.85986469e-12,\n",
" 1.52840414e-12, 1.56381071e-12, 1.76934422e-12, -2.30280552e-12,\n",
" -1.74372973e-12, -2.19445816e-12, -1.54470534e-12, -1.63086766e-11,\n",
" -6.12994204e-12, 2.78726695e-12, -1.64549520e-11, 1.45208307e-11,\n",
" -1.17382547e-12, -1.61504729e-12, 1.64195263e-12, 1.79648674e-11], dtype=float32), 'kernel': Array([[-1.6807569e-11, -1.6429605e-12, -2.3418793e-12, ...,\n",
" -1.6142259e-12, 1.6409287e-12, 1.7958557e-11],\n",
" [-1.6807569e-11, -1.6429605e-12, -2.3418793e-12, ...,\n",
" -1.6142259e-12, 1.6409287e-12, 1.7958557e-11],\n",
" [ 1.8002272e-11, 1.7678676e-12, 2.6154382e-12, ...,\n",
" 1.7471987e-12, -1.7676864e-12, -1.9253273e-11],\n",
" ...,\n",
" [ 1.8002272e-11, 1.7678676e-12, 2.6154382e-12, ...,\n",
" 1.7471987e-12, -1.7676864e-12, -1.9253273e-11],\n",
" [ 1.6807569e-11, 1.6429605e-12, 2.3418793e-12, ...,\n",
" 1.6142259e-12, -1.6409287e-12, -1.7958557e-11],\n",
" [-1.8002272e-11, -1.7678676e-12, -2.6154382e-12, ...,\n",
" -1.7471987e-12, 1.7676864e-12, 1.9253273e-11]], dtype=float32)}, 'Dense_5': {'bias': Array([-6.1843397e-09], dtype=float32), 'kernel': Array([[-3.8655559e-10],\n",
" [-6.1776033e-09],\n",
" [ 6.6520154e-09],\n",
" [ 6.1780892e-09],\n",
" [-3.7819989e-10],\n",
" [ 6.6908012e-09],\n",
" [ 6.1748189e-09],\n",
" [ 4.7096027e-10],\n",
" [-6.1742647e-09],\n",
" [ 6.1776988e-09],\n",
" [ 3.4977454e-10],\n",
" [ 6.6747767e-09],\n",
" [-3.4947031e-10],\n",
" [ 6.1625771e-09],\n",
" [ 5.9706617e-09],\n",
" [ 3.7265022e-10],\n",
" [-6.6755206e-09],\n",
" [-6.6740569e-09],\n",
" [-6.1593202e-09],\n",
" [ 6.6869683e-09],\n",
" [ 6.1268306e-09],\n",
" [ 6.1408589e-09],\n",
" [ 6.1435825e-09],\n",
" [ 3.7568490e-10],\n",
" [-6.1743801e-09],\n",
" [-4.5904001e-09],\n",
" [-6.1196417e-09],\n",
" [-3.0053873e-10],\n",
" [-6.6465597e-09],\n",
" [ 6.1781638e-09],\n",
" [ 6.1736865e-09],\n",
" [-6.1738796e-09],\n",
" [-6.1277143e-09],\n",
" [ 6.6744881e-09],\n",
" [ 6.6844414e-09],\n",
" [-6.1602172e-09],\n",
" [-6.0811818e-09],\n",
" [-3.6156822e-10],\n",
" [-3.7010467e-10],\n",
" [ 6.0481544e-09],\n",
" [-6.6741777e-09],\n",
" [ 6.0523346e-09],\n",
" [-6.1451821e-09],\n",
" [ 6.1366912e-09],\n",
" [-6.1424714e-09],\n",
" [ 6.1337397e-09],\n",
" [ 6.6712147e-09],\n",
" [-6.1800414e-09],\n",
" [ 3.8954642e-10],\n",
" [ 6.1140275e-09],\n",
" [-6.1657550e-09],\n",
" [ 6.6809878e-09],\n",
" [ 6.1638197e-09],\n",
" [-6.1464798e-09],\n",
" [-6.6811321e-09],\n",
" [-3.5263170e-10],\n",
" [-6.6914878e-09],\n",
" [ 6.1312262e-09],\n",
" [-6.1755849e-09],\n",
" [-6.1142509e-09],\n",
" [ 6.0247789e-09],\n",
" [ 2.7609612e-09],\n",
" [ 3.9059445e-10],\n",
" [ 3.3516714e-10],\n",
" [ 3.9409370e-10],\n",
" [ 3.7155776e-10],\n",
" [ 6.1744192e-09],\n",
" [ 3.1093988e-10],\n",
" [-6.6517405e-09],\n",
" [-3.0116415e-10],\n",
" [ 6.6849166e-09],\n",
" [ 3.6436976e-10],\n",
" [ 6.6912711e-09],\n",
" [ 6.1647611e-09],\n",
" [-3.8312323e-10],\n",
" [-6.6827650e-09],\n",
" [-3.7707032e-10],\n",
" [ 3.8468503e-10],\n",
" [-6.6909758e-09],\n",
" [ 6.0943597e-09],\n",
" [ 6.1774577e-09],\n",
" [-5.3503202e-09],\n",
" [ 6.1552168e-09],\n",
" [ 6.1771299e-09],\n",
" [-6.1673875e-09],\n",
" [-6.1211054e-09],\n",
" [ 4.5856574e-10],\n",
" [-2.7017391e-10],\n",
" [ 6.6894876e-09],\n",
" [ 6.1777463e-09],\n",
" [ 6.1723977e-09],\n",
" [ 3.3411923e-10],\n",
" [-6.1649326e-09],\n",
" [-6.1774781e-09],\n",
" [ 6.6912418e-09],\n",
" [-3.4201597e-10],\n",
" [ 6.1790848e-09],\n",
" [ 6.1692020e-09],\n",
" [ 3.3980752e-10],\n",
" [ 6.6538179e-09],\n",
" [-6.1532361e-09],\n",
" [ 2.9105487e-10],\n",
" [-3.9288670e-10],\n",
" [-3.9532333e-10],\n",
" [ 3.7320988e-10],\n",
" [ 6.1771868e-09],\n",
" [ 6.0976726e-09],\n",
" [ 6.1766103e-09],\n",
" [-6.6824506e-09],\n",
" [ 6.6917853e-09],\n",
" [ 6.6808989e-09],\n",
" [-6.1422707e-09],\n",
" [ 3.8819764e-10],\n",
" [-3.9496267e-10],\n",
" [ 6.6737331e-09],\n",
" [ 6.6687353e-09],\n",
" [ 3.5650671e-10],\n",
" [-6.0330674e-09],\n",
" [ 3.5956768e-10],\n",
" [ 6.1637682e-09],\n",
" [-6.1725807e-09],\n",
" [ 3.4623948e-10],\n",
" [-6.5151036e-09],\n",
" [-3.6827852e-10],\n",
" [-6.6676780e-09],\n",
" [-5.9607187e-11],\n",
" [-6.6892105e-09],\n",
" [-6.6833223e-09],\n",
" [ 6.1737433e-09],\n",
" [ 2.5892957e-10],\n",
" [ 6.1128778e-09],\n",
" [-6.6779275e-09],\n",
" [ 3.8849327e-10],\n",
" [-6.6848647e-09],\n",
" [ 3.4088171e-10],\n",
" [ 6.6858181e-09],\n",
" [ 3.6210934e-10],\n",
" [ 6.6430235e-09],\n",
" [ 3.8169863e-09],\n",
" [ 6.0928924e-09],\n",
" [ 6.0423604e-09],\n",
" [-6.1541101e-09],\n",
" [-6.6897923e-09],\n",
" [ 3.7626927e-10],\n",
" [-3.0858194e-10],\n",
" [-6.1289978e-09],\n",
" [-6.1006853e-09],\n",
" [ 3.8402945e-10],\n",
" [-6.5876558e-09],\n",
" [ 6.6850130e-09],\n",
" [ 5.8633010e-09],\n",
" [-6.6196324e-09],\n",
" [-6.0328169e-09],\n",
" [-6.6827703e-09],\n",
" [-3.7603515e-10],\n",
" [ 3.7307224e-10],\n",
" [-3.3732298e-10],\n",
" [-4.4634402e-10],\n",
" [ 6.6906591e-09],\n",
" [-6.5883414e-09],\n",
" [ 6.6611330e-09],\n",
" [ 6.6799757e-09],\n",
" [ 6.0504819e-09],\n",
" [ 6.6907759e-09],\n",
" [-3.6563613e-10],\n",
" [-3.8250805e-10],\n",
" [-6.1571601e-09],\n",
" [-3.2388381e-10],\n",
" [-6.1716832e-09],\n",
" [ 6.6217201e-09],\n",
" [ 3.3915809e-10],\n",
" [ 6.1616561e-09],\n",
" [ 6.1664975e-09],\n",
" [ 6.6874382e-09],\n",
" [ 3.2680589e-10],\n",
" [ 6.6836372e-09],\n",
" [ 6.5336008e-09],\n",
" [ 6.6904602e-09],\n",
" [ 6.6872143e-09],\n",
" [-6.1199472e-09],\n",
" [ 3.0335587e-10],\n",
" [ 5.5999756e-09],\n",
" [ 6.1732575e-09],\n",
" [ 6.6907897e-09],\n",
" [-3.4406655e-10],\n",
" [-3.1398401e-10],\n",
" [-6.1613243e-09],\n",
" [-6.6820878e-09],\n",
" [-3.7754083e-10],\n",
" [-2.8464814e-10],\n",
" [-6.5584449e-09],\n",
" [-6.6818768e-09],\n",
" [ 3.2889158e-10],\n",
" [ 6.1664567e-09],\n",
" [ 6.1175909e-09],\n",
" [-3.0087613e-10],\n",
" [ 6.6828512e-09],\n",
" [ 6.1795529e-09],\n",
" [-5.8711915e-09],\n",
" [ 6.6590631e-09],\n",
" [-3.8226583e-10],\n",
" [-6.1838241e-09],\n",
" [ 6.6855770e-09],\n",
" [-6.6782802e-09],\n",
" [ 6.6688735e-09],\n",
" [ 6.5277912e-09],\n",
" [ 6.1601400e-09],\n",
" [ 3.3986441e-10],\n",
" [-6.1587384e-09],\n",
" [-6.6774910e-09],\n",
" [ 3.8561157e-10],\n",
" [ 6.6883641e-09],\n",
" [-6.6517272e-09],\n",
" [-5.7823892e-09],\n",
" [ 6.1730234e-09],\n",
" [ 6.4995875e-09],\n",
" [ 6.1788215e-09],\n",
" [ 3.1742275e-10],\n",
" [-6.1699090e-09],\n",
" [-4.5385315e-10],\n",
" [ 3.8388245e-10],\n",
" [ 6.6740875e-09],\n",
" [-6.1435399e-09],\n",
" [-4.4310564e-10],\n",
" [ 3.8665030e-10],\n",
" [ 6.1773275e-09],\n",
" [ 6.1636358e-09],\n",
" [ 3.5913342e-10],\n",
" [-6.1613599e-09],\n",
" [ 6.1153198e-09],\n",
" [ 6.1650809e-09],\n",
" [-3.7873873e-10],\n",
" [ 4.5789517e-10],\n",
" [ 6.1707599e-09],\n",
" [-6.1748526e-09],\n",
" [ 6.1727072e-09],\n",
" [ 3.8277456e-10],\n",
" [-4.4562393e-10],\n",
" [ 3.9232129e-10],\n",
" [-6.6740924e-09],\n",
" [-6.6863053e-09],\n",
" [-6.6853150e-09],\n",
" [ 6.1754735e-09],\n",
" [-6.6728880e-09],\n",
" [-6.1756054e-09],\n",
" [-6.6770256e-09],\n",
" [-6.1793619e-09],\n",
" [-3.8152137e-10],\n",
" [ 3.8806935e-10],\n",
" [ 6.1537238e-09],\n",
" [-3.7733053e-10],\n",
" [ 3.1123715e-10],\n",
" [ 6.1809926e-09],\n",
" [-6.1763781e-09],\n",
" [ 6.1775802e-09],\n",
" [ 3.7808229e-10]], dtype=float32)}, 'log_std': Array([-0.00014559], dtype=float32)}}, nu={'params': {'Dense_0': {'bias': Array([7.e-43, 0.e+00, 0.e+00, 0.e+00, 7.e-43, 0.e+00, 7.e-43, 7.e-43,\n",
" 7.e-43, 0.e+00, 7.e-43, 0.e+00, 0.e+00, 7.e-43, 0.e+00, 0.e+00,\n",
" 7.e-43, 7.e-43, 0.e+00, 7.e-43, 0.e+00, 7.e-43, 0.e+00, 7.e-43,\n",
" 0.e+00, 7.e-43, 7.e-43, 7.e-43, 0.e+00, 0.e+00, 0.e+00, 0.e+00,\n",
" 0.e+00, 0.e+00, 0.e+00, 7.e-43, 7.e-43, 0.e+00, 7.e-43, 0.e+00,\n",
" 0.e+00, 0.e+00, 0.e+00, 0.e+00, 0.e+00, 7.e-43, 0.e+00, 0.e+00,\n",
" 0.e+00, 7.e-43, 0.e+00, 0.e+00, 0.e+00, 0.e+00, 7.e-43, 7.e-43,\n",
" 7.e-43, 0.e+00, 0.e+00, 7.e-43, 7.e-43, 7.e-43, 7.e-43, 7.e-43,\n",
" 0.e+00, 0.e+00, 0.e+00, 7.e-43, 7.e-43, 0.e+00, 0.e+00, 0.e+00,\n",
" 7.e-43, 0.e+00, 7.e-43, 0.e+00, 0.e+00, 7.e-43, 7.e-43, 7.e-43,\n",
" 7.e-43, 7.e-43, 0.e+00, 7.e-43, 7.e-43, 0.e+00, 0.e+00, 0.e+00,\n",
" 7.e-43, 0.e+00, 7.e-43, 0.e+00, 0.e+00, 0.e+00, 0.e+00, 7.e-43,\n",
" 0.e+00, 0.e+00, 7.e-43, 7.e-43, 7.e-43, 7.e-43, 0.e+00, 0.e+00,\n",
" 7.e-43, 0.e+00, 0.e+00, 0.e+00, 7.e-43, 0.e+00, 0.e+00, 0.e+00,\n",
" 0.e+00, 0.e+00, 0.e+00, 7.e-43, 7.e-43, 7.e-43, 7.e-43, 7.e-43,\n",
" 0.e+00, 7.e-43, 7.e-43, 0.e+00, 7.e-43, 0.e+00, 0.e+00, 7.e-43,\n",
" 0.e+00, 0.e+00, 7.e-43, 7.e-43, 7.e-43, 7.e-43, 7.e-43, 7.e-43,\n",
" 0.e+00, 7.e-43, 7.e-43, 7.e-43, 0.e+00, 7.e-43, 7.e-43, 7.e-43,\n",
" 7.e-43, 0.e+00, 0.e+00, 0.e+00, 7.e-43, 0.e+00, 0.e+00, 7.e-43,\n",
" 7.e-43, 7.e-43, 7.e-43, 0.e+00, 7.e-43, 0.e+00, 0.e+00, 0.e+00,\n",
" 0.e+00, 0.e+00, 0.e+00, 0.e+00, 0.e+00, 7.e-43, 7.e-43, 0.e+00,\n",
" 0.e+00, 0.e+00, 7.e-43, 0.e+00, 0.e+00, 7.e-43, 0.e+00, 0.e+00,\n",
" 0.e+00, 0.e+00, 0.e+00, 7.e-43, 7.e-43, 0.e+00, 7.e-43, 0.e+00,\n",
" 7.e-43, 0.e+00, 0.e+00, 0.e+00, 7.e-43, 7.e-43, 0.e+00, 0.e+00,\n",
" 0.e+00, 7.e-43, 7.e-43, 7.e-43, 7.e-43, 7.e-43, 7.e-43, 7.e-43,\n",
" 7.e-43, 0.e+00, 7.e-43, 0.e+00, 7.e-43, 0.e+00, 7.e-43, 7.e-43,\n",
" 0.e+00, 0.e+00, 7.e-43, 7.e-43, 7.e-43, 0.e+00, 7.e-43, 7.e-43,\n",
" 0.e+00, 7.e-43, 7.e-43, 0.e+00, 7.e-43, 7.e-43, 7.e-43, 7.e-43,\n",
" 0.e+00, 0.e+00, 7.e-43, 0.e+00, 7.e-43, 7.e-43, 7.e-43, 7.e-43,\n",
" 0.e+00, 0.e+00, 0.e+00, 0.e+00, 0.e+00, 0.e+00, 0.e+00, 0.e+00,\n",
" 0.e+00, 0.e+00, 0.e+00, 0.e+00, 0.e+00, 0.e+00, 0.e+00, 0.e+00,\n",
" 0.e+00, 0.e+00, 7.e-43, 0.e+00, 0.e+00, 7.e-43, 0.e+00, 0.e+00], dtype=float32), 'kernel': Array([[7.e-43, 0.e+00, 0.e+00, ..., 7.e-43, 0.e+00, 0.e+00],\n",
" [7.e-43, 0.e+00, 0.e+00, ..., 7.e-43, 0.e+00, 0.e+00],\n",
" [7.e-43, 0.e+00, 0.e+00, ..., 7.e-43, 0.e+00, 0.e+00],\n",
" ...,\n",
" [7.e-43, 0.e+00, 0.e+00, ..., 7.e-43, 0.e+00, 0.e+00],\n",
" [7.e-43, 0.e+00, 0.e+00, ..., 7.e-43, 0.e+00, 0.e+00],\n",
" [7.e-43, 0.e+00, 0.e+00, ..., 7.e-43, 0.e+00, 0.e+00]], dtype=float32)}, 'Dense_1': {'bias': Array([3.1469093e-14, 8.7121838e-14, 3.1524428e-14, 8.1083340e-14,\n",
" 3.1400565e-14, 9.5083995e-14, 8.7520248e-14, 3.0413850e-14,\n",
" 8.3409631e-14, 8.8949932e-14, 3.0898776e-14, 8.4273456e-14,\n",
" 7.8286722e-14, 3.0711541e-14, 3.1281848e-14, 7.9285591e-14,\n",
" 8.2523384e-14, 8.2519515e-14, 8.0005237e-14, 8.4032323e-14,\n",
" 9.4522812e-14, 3.0676721e-14, 8.2428815e-14, 3.4723397e-14,\n",
" 8.1286303e-14, 8.4509575e-14, 2.5317645e-12, 8.6583538e-14,\n",
" 3.0395716e-14, 8.1653136e-14, 3.0561694e-14, 3.1361873e-14,\n",
" 8.6422595e-14, 7.9948851e-14, 8.9926113e-14, 2.9955656e-14,\n",
" 8.6943799e-14, 8.2753350e-14, 3.1579906e-14, 3.1489849e-14,\n",
" 8.5219029e-14, 8.6388646e-14, 7.9661219e-14, 3.1641248e-14,\n",
" 8.4022694e-14, 8.6496687e-14, 7.9054208e-14, 2.9760198e-14,\n",
" 8.6306416e-14, 8.7948779e-14, 3.1711297e-14, 8.8595560e-14,\n",
" 8.0190473e-14, 8.6881708e-14, 3.0019569e-14, 3.3298593e-14,\n",
" 8.1419097e-14, 8.4182220e-14, 8.6198328e-14, 7.7233386e-14,\n",
" 3.1253286e-14, 8.7068068e-14, 3.0019939e-14, 3.0553610e-14,\n",
" 7.9709094e-14, 7.9538874e-14, 8.2772026e-14, 8.4562748e-14,\n",
" 3.0161125e-14, 8.4582169e-14, 7.9997153e-14, 8.3321547e-14,\n",
" 3.0441229e-14, 8.8881762e-14, 8.5223515e-14, 7.6368423e-14,\n",
" 8.6652426e-14, 3.0150670e-14, 8.3026583e-14, 3.3523819e-14,\n",
" 3.0758538e-14, 7.7542119e-14, 3.0456977e-14, 8.1874808e-14,\n",
" 7.9973646e-14, 8.3165225e-14, 8.1575629e-14, 3.1392589e-14,\n",
" 2.8575196e-11, 8.2384240e-14, 8.5764051e-14, 8.3646150e-14,\n",
" 3.0588433e-14, 3.0183958e-14, 9.0230300e-14, 3.0812738e-14,\n",
" 3.0985617e-14, 8.1762762e-14, 2.9775397e-14, 8.4227845e-14,\n",
" 8.7015288e-14, 3.1643850e-14, 8.7046452e-14, 8.4730705e-14,\n",
" 8.2809248e-14, 3.0093461e-14, 8.4697393e-14, 3.1481399e-14,\n",
" 3.1382642e-14, 2.9992227e-14, 8.3107566e-14, 7.7644332e-14,\n",
" 3.1182668e-14, 8.2608345e-14, 8.4545462e-14, 8.6818980e-14,\n",
" 7.9620379e-14, 8.9375264e-14, 3.0522907e-14, 9.0820458e-14,\n",
" 3.0889872e-14, 3.2212978e-14, 8.1036591e-14, 8.3619397e-14,\n",
" 9.1934212e-14, 9.3259798e-14, 8.0280495e-14, 3.0615657e-14,\n",
" 9.3122138e-14, 8.4658314e-14, 2.7671173e-12, 8.3194878e-14,\n",
" 8.7144159e-14, 2.9810051e-14, 8.6270292e-14, 8.5228367e-14,\n",
" 2.9780211e-14, 8.4936425e-14, 9.0915129e-14, 8.3327144e-14,\n",
" 8.6342663e-14, 7.9813841e-14, 8.2344213e-14, 3.0691053e-14,\n",
" 8.6679287e-14, 3.1675715e-14, 8.6835283e-14, 3.0387148e-14,\n",
" 2.9768261e-14, 9.0933622e-14, 3.1604426e-14, 8.3521819e-14,\n",
" 8.2639001e-14, 7.8839550e-14, 7.9093822e-14, 3.1172652e-14,\n",
" 8.7725380e-14, 8.7919106e-14, 8.6635648e-14, 8.4624351e-14,\n",
" 8.1674725e-14, 3.1539235e-14, 8.8392943e-14, 8.3475964e-14,\n",
" 9.0390003e-14, 8.1214867e-14, 8.1143947e-14, 8.2175681e-14,\n",
" 8.1758920e-14, 3.0798060e-14, 3.3724180e-14, 8.1960521e-14,\n",
" 8.9672444e-14, 8.6844919e-14, 8.2994348e-14, 8.1104597e-14,\n",
" 3.0418393e-14, 8.1258168e-14, 3.1523016e-14, 7.6816144e-14,\n",
" 3.0213540e-14, 2.9579363e-14, 8.7230069e-14, 8.3386104e-14,\n",
" 8.4678277e-14, 8.7680717e-14, 8.4607716e-14, 3.1366403e-14,\n",
" 2.9197995e-14, 8.9683781e-14, 8.6310523e-14, 8.4040969e-14,\n",
" 3.1400860e-14, 3.3998845e-14, 2.9987999e-14, 8.5936297e-14,\n",
" 8.7394481e-14, 3.1430116e-14, 3.0393697e-14, 4.8121739e-11,\n",
" 8.4418116e-14, 8.2186773e-14, 3.2397814e-14, 3.0579519e-14,\n",
" 2.2910775e-13, 8.6450439e-14, 8.4291068e-14, 8.6205172e-14,\n",
" 8.8165721e-14, 8.3840053e-14, 9.0104139e-14, 2.9553112e-14,\n",
" 8.3574417e-14, 3.0368787e-14, 8.7539771e-14, 8.3330918e-14,\n",
" 8.3134834e-14, 3.1741059e-14, 3.1806772e-14, 7.9462295e-14,\n",
" 8.4391742e-14, 8.3963577e-14, 3.0999268e-14, 2.2302034e-12,\n",
" 9.0161778e-14, 7.9783307e-14, 8.6268978e-14, 3.0946240e-14,\n",
" 8.9797690e-14, 3.1493207e-14, 3.2540451e-14, 8.8031301e-14,\n",
" 8.9137492e-14, 8.4630741e-14, 3.0880799e-14, 7.9791778e-14,\n",
" 3.1882703e-14, 3.0386226e-14, 8.2147241e-14, 9.0612047e-14,\n",
" 3.0701238e-14, 8.4227703e-14, 8.4848205e-14, 8.3596948e-14,\n",
" 9.1174687e-14, 8.1967893e-14, 3.0689488e-14, 3.0493383e-14,\n",
" 8.6743506e-14, 8.6627767e-14, 2.3575052e-13, 8.4647756e-14,\n",
" 8.2248532e-14, 8.1330918e-14, 8.2987240e-14, 3.1932380e-14], dtype=float32), 'kernel': Array([[3.1910889e-14, 8.7500536e-14, 3.1972512e-14, ..., 8.1760316e-14,\n",
" 8.3333744e-14, 3.2359003e-14],\n",
" [3.1450689e-14, 8.7058344e-14, 3.1506193e-14, ..., 8.1330918e-14,\n",
" 8.2926965e-14, 3.1914067e-14],\n",
" [3.1450689e-14, 8.7058344e-14, 3.1506193e-14, ..., 8.1330918e-14,\n",
" 8.2926965e-14, 3.1914067e-14],\n",
" ...,\n",
" [3.1910889e-14, 8.7500536e-14, 3.1972512e-14, ..., 8.1760316e-14,\n",
" 8.3333744e-14, 3.2359003e-14],\n",
" [3.1450689e-14, 8.7058344e-14, 3.1506193e-14, ..., 8.1330918e-14,\n",
" 8.2926965e-14, 3.1914067e-14],\n",
" [3.1450689e-14, 8.7058344e-14, 3.1506193e-14, ..., 8.1330918e-14,\n",
" 8.2926965e-14, 3.1914067e-14]], dtype=float32)}, 'Dense_2': {'bias': Array([0.00097166], dtype=float32), 'kernel': Array([[9.8969578e-04],\n",
" [9.7163819e-04],\n",
" [9.8969566e-04],\n",
" [9.7163877e-04],\n",
" [9.8969566e-04],\n",
" [9.7163825e-04],\n",
" [9.7163860e-04],\n",
" [9.8969578e-04],\n",
" [9.7163866e-04],\n",
" [9.7163772e-04],\n",
" [9.8969578e-04],\n",
" [9.7163866e-04],\n",
" [9.7163935e-04],\n",
" [9.8969566e-04],\n",
" [9.8969578e-04],\n",
" [9.7163941e-04],\n",
" [9.7163854e-04],\n",
" [9.7163871e-04],\n",
" [9.7163901e-04],\n",
" [9.7163866e-04],\n",
" [9.7163813e-04],\n",
" [9.8969566e-04],\n",
" [9.7163877e-04],\n",
" [9.8969450e-04],\n",
" [9.7163877e-04],\n",
" [9.7163866e-04],\n",
" [1.3174417e-06],\n",
" [9.7163860e-04],\n",
" [9.8969589e-04],\n",
" [9.7163906e-04],\n",
" [9.8969589e-04],\n",
" [9.8969566e-04],\n",
" [9.7163848e-04],\n",
" [9.7163918e-04],\n",
" [9.7163831e-04],\n",
" [9.8969589e-04],\n",
" [9.7163854e-04],\n",
" [9.7163854e-04],\n",
" [9.8969555e-04],\n",
" [9.8969566e-04],\n",
" [9.7163860e-04],\n",
" [9.7163860e-04],\n",
" [9.7163906e-04],\n",
" [9.8969555e-04],\n",
" [9.7163918e-04],\n",
" [9.7163842e-04],\n",
" [9.7163906e-04],\n",
" [9.8969578e-04],\n",
" [9.7163854e-04],\n",
" [9.7163854e-04],\n",
" [9.8969566e-04],\n",
" [9.7163813e-04],\n",
" [9.7163895e-04],\n",
" [9.7163866e-04],\n",
" [9.8969589e-04],\n",
" [9.8969461e-04],\n",
" [9.7163877e-04],\n",
" [9.7163854e-04],\n",
" [9.7163854e-04],\n",
" [9.7163924e-04],\n",
" [9.8969555e-04],\n",
" [9.7163842e-04],\n",
" [9.8969589e-04],\n",
" [9.8969578e-04],\n",
" [9.7163912e-04],\n",
" [9.7163889e-04],\n",
" [9.7163877e-04],\n",
" [9.7163860e-04],\n",
" [9.8969589e-04],\n",
" [9.7163866e-04],\n",
" [9.7163912e-04],\n",
" [9.7163866e-04],\n",
" [9.8969566e-04],\n",
" [9.7163842e-04],\n",
" [9.7163842e-04],\n",
" [9.7163941e-04],\n",
" [9.7163854e-04],\n",
" [9.8969578e-04],\n",
" [9.7163866e-04],\n",
" [9.8969461e-04],\n",
" [9.8969578e-04],\n",
" [9.7163918e-04],\n",
" [9.8969589e-04],\n",
" [9.7163877e-04],\n",
" [9.7163901e-04],\n",
" [9.7163866e-04],\n",
" [9.7163854e-04],\n",
" [9.8969578e-04],\n",
" [3.3374417e-07],\n",
" [9.7163883e-04],\n",
" [9.7163854e-04],\n",
" [9.7163866e-04],\n",
" [9.8969589e-04],\n",
" [9.8969578e-04],\n",
" [9.7163854e-04],\n",
" [9.8969566e-04],\n",
" [9.8969578e-04],\n",
" [9.7163924e-04],\n",
" [9.8969589e-04],\n",
" [9.7163866e-04],\n",
" [9.7163854e-04],\n",
" [9.8969578e-04],\n",
" [9.7163854e-04],\n",
" [9.7163871e-04],\n",
" [9.7163866e-04],\n",
" [9.8969578e-04],\n",
" [9.7163866e-04],\n",
" [9.8969566e-04],\n",
" [9.8969555e-04],\n",
" [9.8969578e-04],\n",
" [9.7163860e-04],\n",
" [9.7163935e-04],\n",
" [9.8969566e-04],\n",
" [9.7163883e-04],\n",
" [9.7163854e-04],\n",
" [9.7163854e-04],\n",
" [9.7163918e-04],\n",
" [9.7163848e-04],\n",
" [9.8969589e-04],\n",
" [9.7163778e-04],\n",
" [9.8969566e-04],\n",
" [9.8969555e-04],\n",
" [9.7163883e-04],\n",
" [9.7163854e-04],\n",
" [9.7163825e-04],\n",
" [9.7163813e-04],\n",
" [9.7163901e-04],\n",
" [9.8969566e-04],\n",
" [9.7163796e-04],\n",
" [9.7163854e-04],\n",
" [9.6905010e-04],\n",
" [9.7163906e-04],\n",
" [9.7163842e-04],\n",
" [9.8969589e-04],\n",
" [9.7163854e-04],\n",
" [9.7163866e-04],\n",
" [9.8969589e-04],\n",
" [9.7163860e-04],\n",
" [9.7163836e-04],\n",
" [9.7163918e-04],\n",
" [9.7163860e-04],\n",
" [9.7163860e-04],\n",
" [9.7163883e-04],\n",
" [9.8969589e-04],\n",
" [9.7163842e-04],\n",
" [9.8969566e-04],\n",
" [9.7163854e-04],\n",
" [9.8969578e-04],\n",
" [9.8969589e-04],\n",
" [9.7163842e-04],\n",
" [9.8969566e-04],\n",
" [9.7163842e-04],\n",
" [9.7163866e-04],\n",
" [9.7163930e-04],\n",
" [9.7163935e-04],\n",
" [9.8969566e-04],\n",
" [9.7163860e-04],\n",
" [9.7163854e-04],\n",
" [9.7163854e-04],\n",
" [9.7163854e-04],\n",
" [9.7163854e-04],\n",
" [9.8969589e-04],\n",
" [9.7163854e-04],\n",
" [9.7163889e-04],\n",
" [9.7163848e-04],\n",
" [9.7163871e-04],\n",
" [9.7163895e-04],\n",
" [9.7163866e-04],\n",
" [9.7163889e-04],\n",
" [9.8969578e-04],\n",
" [9.8969461e-04],\n",
" [9.7163883e-04],\n",
" [9.7163842e-04],\n",
" [9.7163825e-04],\n",
" [9.7163860e-04],\n",
" [9.7163889e-04],\n",
" [9.8969578e-04],\n",
" [9.7163860e-04],\n",
" [9.8969566e-04],\n",
" [9.7163947e-04],\n",
" [9.8969589e-04],\n",
" [9.8969589e-04],\n",
" [9.7163854e-04],\n",
" [9.7163866e-04],\n",
" [9.7163871e-04],\n",
" [9.7163860e-04],\n",
" [9.7163854e-04],\n",
" [9.8969566e-04],\n",
" [9.8969589e-04],\n",
" [9.7163854e-04],\n",
" [9.7163854e-04],\n",
" [9.7163854e-04],\n",
" [9.8969566e-04],\n",
" [9.8969450e-04],\n",
" [9.8969589e-04],\n",
" [9.7163854e-04],\n",
" [9.7163854e-04],\n",
" [9.8969578e-04],\n",
" [9.8969589e-04],\n",
" [9.0059126e-04],\n",
" [9.7163854e-04],\n",
" [9.7163877e-04],\n",
" [9.8969555e-04],\n",
" [9.8969578e-04],\n",
" [9.7154133e-04],\n",
" [9.7163854e-04],\n",
" [9.7163860e-04],\n",
" [9.7163854e-04],\n",
" [9.7163860e-04],\n",
" [9.7163854e-04],\n",
" [9.7163831e-04],\n",
" [9.8969589e-04],\n",
" [9.7163889e-04],\n",
" [9.8969589e-04],\n",
" [9.7163854e-04],\n",
" [9.7163854e-04],\n",
" [9.7163906e-04],\n",
" [9.8969555e-04],\n",
" [9.8969578e-04],\n",
" [9.7163935e-04],\n",
" [9.7163854e-04],\n",
" [9.7163854e-04],\n",
" [9.8969578e-04],\n",
" [9.6969621e-04],\n",
" [9.7163831e-04],\n",
" [9.7163866e-04],\n",
" [9.7163854e-04],\n",
" [9.8969578e-04],\n",
" [9.7163842e-04],\n",
" [9.8969566e-04],\n",
" [9.8969543e-04],\n",
" [9.7163854e-04],\n",
" [9.7163842e-04],\n",
" [9.7163854e-04],\n",
" [9.8969566e-04],\n",
" [9.7163895e-04],\n",
" [9.8969555e-04],\n",
" [9.8969566e-04],\n",
" [9.7163883e-04],\n",
" [9.7163836e-04],\n",
" [9.8969589e-04],\n",
" [9.7163854e-04],\n",
" [9.7163866e-04],\n",
" [9.7163854e-04],\n",
" [9.7163854e-04],\n",
" [9.7163860e-04],\n",
" [9.8969578e-04],\n",
" [9.8969578e-04],\n",
" [9.7163866e-04],\n",
" [9.7163866e-04],\n",
" [9.7153842e-04],\n",
" [9.7163860e-04],\n",
" [9.7163866e-04],\n",
" [9.7163866e-04],\n",
" [9.7163906e-04],\n",
" [9.8969566e-04]], dtype=float32)}, 'Dense_3': {'bias': Array([0.0000000e+00, 0.0000000e+00, 7.0064923e-43, 0.0000000e+00,\n",
" 7.0064923e-43, 0.0000000e+00, 7.0064923e-43, 0.0000000e+00,\n",
" 7.0064923e-43, 0.0000000e+00, 0.0000000e+00, 0.0000000e+00,\n",
" 7.0064923e-43, 0.0000000e+00, 7.0064923e-43, 7.0064923e-43,\n",
" 7.0064923e-43, 7.0064923e-43, 7.0064923e-43, 7.0064923e-43,\n",
" 0.0000000e+00, 0.0000000e+00, 0.0000000e+00, 0.0000000e+00,\n",
" 7.0064923e-43, 7.0064923e-43, 7.0064923e-43, 0.0000000e+00,\n",
" 0.0000000e+00, 0.0000000e+00, 7.0064923e-43, 7.0064923e-43,\n",
" 0.0000000e+00, 7.0064923e-43, 0.0000000e+00, 0.0000000e+00,\n",
" 7.0064923e-43, 0.0000000e+00, 0.0000000e+00, 7.0064923e-43,\n",
" 7.0064923e-43, 7.0064923e-43, 0.0000000e+00, 0.0000000e+00,\n",
" 0.0000000e+00, 0.0000000e+00, 0.0000000e+00, 7.0064923e-43,\n",
" 7.0064923e-43, 0.0000000e+00, 7.0064923e-43, 7.0064923e-43,\n",
" 0.0000000e+00, 7.0064923e-43, 7.0064923e-43, 0.0000000e+00,\n",
" 0.0000000e+00, 7.0064923e-43, 7.0064923e-43, 0.0000000e+00,\n",
" 0.0000000e+00, 7.0064923e-43, 0.0000000e+00, 0.0000000e+00,\n",
" 0.0000000e+00, 0.0000000e+00, 7.0064923e-43, 0.0000000e+00,\n",
" 0.0000000e+00, 0.0000000e+00, 0.0000000e+00, 7.0064923e-43,\n",
" 7.0064923e-43, 7.0064923e-43, 0.0000000e+00, 7.0064923e-43,\n",
" 7.0064923e-43, 7.0064923e-43, 0.0000000e+00, 0.0000000e+00,\n",
" 7.0064923e-43, 7.0064923e-43, 7.0064923e-43, 0.0000000e+00,\n",
" 0.0000000e+00, 0.0000000e+00, 7.0064923e-43, 0.0000000e+00,\n",
" 0.0000000e+00, 0.0000000e+00, 0.0000000e+00, 7.0064923e-43,\n",
" 0.0000000e+00, 0.0000000e+00, 7.0064923e-43, 0.0000000e+00,\n",
" 0.0000000e+00, 7.0064923e-43, 7.0064923e-43, 0.0000000e+00,\n",
" 7.0064923e-43, 7.0064923e-43, 0.0000000e+00, 7.0064923e-43,\n",
" 0.0000000e+00, 0.0000000e+00, 0.0000000e+00, 0.0000000e+00,\n",
" 0.0000000e+00, 7.0064923e-43, 7.0064923e-43, 7.0064923e-43,\n",
" 7.0064923e-43, 0.0000000e+00, 0.0000000e+00, 7.0064923e-43,\n",
" 0.0000000e+00, 7.0064923e-43, 0.0000000e+00, 0.0000000e+00,\n",
" 0.0000000e+00, 7.0064923e-43, 7.0064923e-43, 0.0000000e+00,\n",
" 0.0000000e+00, 0.0000000e+00, 0.0000000e+00, 7.0064923e-43,\n",
" 0.0000000e+00, 7.0064923e-43, 0.0000000e+00, 0.0000000e+00,\n",
" 0.0000000e+00, 0.0000000e+00, 0.0000000e+00, 0.0000000e+00,\n",
" 0.0000000e+00, 7.0064923e-43, 7.0064923e-43, 7.0064923e-43,\n",
" 0.0000000e+00, 7.0064923e-43, 0.0000000e+00, 7.0064923e-43,\n",
" 7.0064923e-43, 0.0000000e+00, 0.0000000e+00, 0.0000000e+00,\n",
" 1.3990084e-31, 0.0000000e+00, 0.0000000e+00, 7.0064923e-43,\n",
" 0.0000000e+00, 0.0000000e+00, 0.0000000e+00, 7.0064923e-43,\n",
" 0.0000000e+00, 0.0000000e+00, 0.0000000e+00, 7.0064923e-43,\n",
" 0.0000000e+00, 0.0000000e+00, 0.0000000e+00, 0.0000000e+00,\n",
" 7.0064923e-43, 0.0000000e+00, 7.0064923e-43, 7.0064923e-43,\n",
" 0.0000000e+00, 7.0064923e-43, 7.0064923e-43, 7.0064923e-43,\n",
" 0.0000000e+00, 7.0064923e-43, 7.0064923e-43, 0.0000000e+00,\n",
" 0.0000000e+00, 0.0000000e+00, 0.0000000e+00, 7.0064923e-43,\n",
" 7.0064923e-43, 0.0000000e+00, 0.0000000e+00, 0.0000000e+00,\n",
" 7.0064923e-43, 0.0000000e+00, 7.0064923e-43, 7.0064923e-43,\n",
" 0.0000000e+00, 0.0000000e+00, 0.0000000e+00, 0.0000000e+00,\n",
" 7.0064923e-43, 0.0000000e+00, 7.0064923e-43, 0.0000000e+00,\n",
" 0.0000000e+00, 7.0064923e-43, 0.0000000e+00, 7.0064923e-43,\n",
" 7.0064923e-43, 0.0000000e+00, 0.0000000e+00, 7.0064923e-43,\n",
" 0.0000000e+00, 0.0000000e+00, 0.0000000e+00, 7.0064923e-43,\n",
" 0.0000000e+00, 7.0064923e-43, 0.0000000e+00, 7.0064923e-43,\n",
" 7.0064923e-43, 0.0000000e+00, 0.0000000e+00, 7.0064923e-43,\n",
" 7.0064923e-43, 7.0064923e-43, 7.0064923e-43, 0.0000000e+00,\n",
" 0.0000000e+00, 7.0064923e-43, 0.0000000e+00, 0.0000000e+00,\n",
" 7.0064923e-43, 0.0000000e+00, 7.0064923e-43, 7.0064923e-43,\n",
" 7.0064923e-43, 7.0064923e-43, 7.0064923e-43, 0.0000000e+00,\n",
" 7.0064923e-43, 0.0000000e+00, 0.0000000e+00, 7.0064923e-43,\n",
" 7.0064923e-43, 7.0064923e-43, 0.0000000e+00, 7.0064923e-43,\n",
" 0.0000000e+00, 0.0000000e+00, 0.0000000e+00, 0.0000000e+00,\n",
" 0.0000000e+00, 0.0000000e+00, 0.0000000e+00, 7.0064923e-43,\n",
" 0.0000000e+00, 7.0064923e-43, 7.0064923e-43, 0.0000000e+00,\n",
" 7.0064923e-43, 7.0064923e-43, 0.0000000e+00, 7.0064923e-43], dtype=float32), 'kernel': Array([[0.e+00, 0.e+00, 7.e-43, ..., 7.e-43, 0.e+00, 0.e+00],\n",
" [0.e+00, 0.e+00, 7.e-43, ..., 7.e-43, 0.e+00, 0.e+00],\n",
" [0.e+00, 0.e+00, 7.e-43, ..., 7.e-43, 0.e+00, 0.e+00],\n",
" ...,\n",
" [0.e+00, 0.e+00, 7.e-43, ..., 7.e-43, 0.e+00, 7.e-43],\n",
" [0.e+00, 0.e+00, 7.e-43, ..., 7.e-43, 0.e+00, 7.e-43],\n",
" [0.e+00, 0.e+00, 7.e-43, ..., 7.e-43, 0.e+00, 7.e-43]], dtype=float32)}, 'Dense_4': {'bias': Array([1.11147006e-13, 1.14333926e-15, 5.01215187e-15, 4.51753693e-16,\n",
" 1.24167129e-13, 1.32680183e-15, 1.38136907e-15, 3.14773503e-14,\n",
" 1.02126826e-15, 8.05438283e-16, 1.22144563e-13, 1.63302298e-15,\n",
" 1.23096493e-13, 2.43947733e-15, 8.06308365e-15, 1.21173565e-13,\n",
" 1.60967113e-15, 1.67378602e-15, 2.08144815e-15, 1.61125614e-15,\n",
" 8.70114002e-15, 3.62691461e-15, 4.18669624e-15, 1.34334465e-13,\n",
" 1.04127878e-15, 9.61887159e-14, 5.55652724e-15, 1.26615366e-13,\n",
" 5.58106663e-15, 6.67521467e-16, 1.05202604e-15, 1.39298221e-15,\n",
" 5.55633496e-15, 1.63374825e-15, 1.20252833e-15, 2.66218622e-15,\n",
" 9.94882887e-15, 1.19610349e-13, 1.10831070e-13, 1.21089187e-14,\n",
" 1.66470636e-15, 1.24741102e-14, 4.05156569e-15, 4.69808137e-15,\n",
" 3.47577281e-15, 4.25318494e-15, 1.79768576e-15, 6.69750169e-16,\n",
" 1.37947013e-13, 6.92806798e-15, 2.27587906e-15, 1.34198723e-15,\n",
" 2.33558324e-15, 3.26473794e-15, 1.34586611e-15, 1.20851950e-13,\n",
" 1.27619479e-15, 4.52999742e-15, 1.31318906e-15, 6.05969785e-15,\n",
" 1.43606423e-14, 5.08057900e-15, 1.19047337e-13, 1.25855909e-13,\n",
" 1.20304781e-13, 1.16084537e-13, 1.00067107e-15, 1.20600375e-13,\n",
" 8.32181813e-16, 1.24271511e-13, 1.73354282e-15, 1.23314756e-13,\n",
" 9.07148464e-16, 1.67129066e-15, 1.23213641e-13, 1.28431233e-15,\n",
" 1.29811933e-13, 1.23925826e-13, 1.30627769e-15, 8.65812854e-15,\n",
" 1.16579421e-15, 6.09477001e-14, 2.39697894e-15, 1.18334145e-15,\n",
" 1.54219977e-15, 6.24974663e-15, 3.89225429e-14, 1.26377831e-13,\n",
" 1.42212978e-15, 1.14297821e-15, 1.57845606e-15, 1.17426007e-13,\n",
" 8.39788645e-16, 8.30107006e-16, 1.28629682e-15, 1.20845770e-13,\n",
" 1.03154817e-15, 1.84780195e-15, 1.24067179e-13, 4.80924640e-15,\n",
" 3.29096991e-15, 1.16399891e-13, 1.29364862e-13, 1.32772008e-13,\n",
" 1.24708485e-13, 8.45288218e-16, 8.39788274e-15, 8.71083971e-16,\n",
" 1.29553065e-15, 1.25092759e-15, 1.35118272e-15, 4.31502088e-15,\n",
" 1.35790562e-13, 1.30850869e-13, 1.68146279e-15, 1.93179882e-15,\n",
" 1.16471503e-13, 1.36290718e-14, 1.17019499e-13, 2.33501297e-15,\n",
" 1.12036730e-15, 1.17656766e-13, 2.22182112e-14, 1.17177603e-13,\n",
" 3.37921740e-15, 2.50024593e-14, 1.44682121e-15, 1.25104268e-15,\n",
" 1.46812060e-15, 2.98356819e-14, 6.98916785e-15, 1.49618841e-15,\n",
" 1.23805968e-13, 1.79598640e-15, 1.21200481e-13, 1.14091103e-15,\n",
" 1.21506537e-13, 3.28142787e-15, 2.55043844e-16, 8.04658684e-15,\n",
" 1.35907139e-14, 3.23509898e-15, 1.39872573e-15, 1.17672175e-13,\n",
" 1.23305392e-13, 5.54425585e-15, 8.14029833e-15, 1.35223294e-13,\n",
" 1.48698718e-14, 1.16512632e-15, 5.81296757e-14, 8.63803522e-15,\n",
" 1.27647145e-14, 1.27805572e-15, 1.14998207e-13, 1.19000743e-13,\n",
" 1.23659397e-13, 7.30826600e-14, 9.29546662e-16, 6.51455623e-15,\n",
" 2.26462962e-15, 1.39792571e-15, 1.28625866e-14, 1.30987176e-15,\n",
" 1.20761962e-13, 1.29759715e-13, 2.23604226e-15, 1.20007669e-13,\n",
" 1.18605227e-15, 4.50020643e-15, 1.24981256e-13, 1.89436843e-15,\n",
" 2.11049990e-15, 1.58556743e-15, 1.17945557e-13, 1.90461817e-15,\n",
" 1.00407379e-14, 1.35031197e-15, 1.08059868e-15, 6.36802588e-15,\n",
" 1.23453412e-13, 4.66601279e-14, 1.51196154e-15, 1.31245796e-15,\n",
" 1.15348364e-13, 1.23728149e-13, 2.56502286e-15, 1.86687756e-15,\n",
" 1.30860763e-13, 1.27511703e-13, 1.63286827e-14, 1.30722627e-15,\n",
" 1.20218519e-13, 1.54296824e-15, 6.39236749e-15, 1.24716914e-13,\n",
" 1.96577585e-15, 1.10161198e-15, 2.77457517e-14, 2.37774388e-15,\n",
" 1.25074864e-13, 6.19380772e-16, 1.72980846e-15, 2.33123986e-15,\n",
" 1.91562684e-15, 1.03251326e-14, 2.40200311e-15, 1.18654246e-13,\n",
" 2.09975444e-15, 2.43577749e-15, 1.21498433e-13, 1.04311620e-15,\n",
" 2.80282165e-15, 3.44417420e-14, 1.09318443e-15, 2.45724461e-14,\n",
" 7.45257756e-16, 1.26091385e-13, 1.80462318e-15, 5.51285464e-14,\n",
" 1.25968084e-13, 2.76142079e-15, 3.39748346e-15, 2.21840351e-14,\n",
" 1.22972514e-13, 8.29267702e-16, 1.63695427e-15, 1.20667988e-13,\n",
" 1.90551369e-15, 6.36976061e-15, 2.22418189e-15, 1.29284468e-13,\n",
" 3.29301880e-14, 1.23827217e-15, 9.81244047e-16, 1.56630792e-15,\n",
" 1.25498394e-13, 2.61702959e-14, 1.22535066e-13, 2.74570177e-15,\n",
" 1.64503984e-15, 1.73674788e-15, 1.32765861e-15, 1.71886935e-15,\n",
" 1.31337689e-15, 1.52677096e-15, 1.00561043e-15, 1.25612411e-13,\n",
" 4.44012875e-14, 3.28541994e-15, 1.34587410e-13, 1.23902109e-13,\n",
" 6.01474867e-16, 1.26386199e-15, 1.16123696e-15, 1.33933554e-13], dtype=float32), 'kernel': Array([[1.11066314e-13, 1.14253903e-15, 5.00865108e-15, ...,\n",
" 1.26299886e-15, 1.16050682e-15, 1.33837548e-13],\n",
" [1.11066314e-13, 1.14253903e-15, 5.00865108e-15, ...,\n",
" 1.26299886e-15, 1.16050682e-15, 1.33837548e-13],\n",
" [5.83394213e-14, 6.39162486e-16, 3.37381926e-15, ...,\n",
" 7.34622834e-16, 6.52683884e-16, 7.18212314e-14],\n",
" ...,\n",
" [5.83394213e-14, 6.39162486e-16, 3.37381926e-15, ...,\n",
" 7.34622834e-16, 6.52683884e-16, 7.18212314e-14],\n",
" [1.11066314e-13, 1.14253903e-15, 5.00865108e-15, ...,\n",
" 1.26299886e-15, 1.16050682e-15, 1.33837548e-13],\n",
" [5.83394213e-14, 6.39162486e-16, 3.37381926e-15, ...,\n",
" 7.34622834e-16, 6.52683884e-16, 7.18212314e-14]], dtype=float32)}, 'Dense_5': {'bias': Array([1.8588816e-08], dtype=float32), 'kernel': Array([[1.77343906e-09],\n",
" [1.85511713e-08],\n",
" [1.06154072e-08],\n",
" [1.85626678e-08],\n",
" [1.77615245e-09],\n",
" [1.07988063e-08],\n",
" [1.85358182e-08],\n",
" [2.77409123e-10],\n",
" [1.85305069e-08],\n",
" [1.85507467e-08],\n",
" [8.39492587e-10],\n",
" [1.07695124e-08],\n",
" [9.13987219e-10],\n",
" [1.84680111e-08],\n",
" [9.68565339e-10],\n",
" [9.59194169e-10],\n",
" [1.07713829e-08],\n",
" [1.07677387e-08],\n",
" [1.84396853e-08],\n",
" [1.07827489e-08],\n",
" [1.79307857e-08],\n",
" [1.83198221e-08],\n",
" [1.83649735e-08],\n",
" [1.54407265e-09],\n",
" [1.85282509e-08],\n",
" [9.41930800e-09],\n",
" [1.81778432e-08],\n",
" [7.20907889e-10],\n",
" [1.05883631e-08],\n",
" [1.85564524e-08],\n",
" [1.85272757e-08],\n",
" [1.85316598e-08],\n",
" [1.82859026e-08],\n",
" [1.07687086e-08],\n",
" [1.07940501e-08],\n",
" [1.84554345e-08],\n",
" [1.80410673e-08],\n",
" [9.08479403e-10],\n",
" [8.23337787e-10],\n",
" [1.76927948e-08],\n",
" [1.07677307e-08],\n",
" [1.78959834e-08],\n",
" [1.83739051e-08],\n",
" [1.83334699e-08],\n",
" [1.83302227e-08],\n",
" [1.82727664e-08],\n",
" [1.07601341e-08],\n",
" [1.85643412e-08],\n",
" [1.62061142e-09],\n",
" [1.82190973e-08],\n",
" [1.84777100e-08],\n",
" [1.07852971e-08],\n",
" [1.84750633e-08],\n",
" [1.83529991e-08],\n",
" [1.07857625e-08],\n",
" [7.96473276e-10],\n",
" [1.08016254e-08],\n",
" [1.82535853e-08],\n",
" [1.85395184e-08],\n",
" [1.81413284e-08],\n",
" [1.75299384e-08],\n",
" [8.07640121e-10],\n",
" [1.06576625e-09],\n",
" [8.56901383e-10],\n",
" [1.47650048e-09],\n",
" [1.81374438e-09],\n",
" [1.85315159e-08],\n",
" [7.28875404e-10],\n",
" [1.07648788e-08],\n",
" [7.21797122e-10],\n",
" [1.07740705e-08],\n",
" [9.99326288e-10],\n",
" [1.08110418e-08],\n",
" [1.84730649e-08],\n",
" [1.45370471e-09],\n",
" [1.07897717e-08],\n",
" [1.22695976e-09],\n",
" [1.18892507e-09],\n",
" [1.07995053e-08],\n",
" [1.81170847e-08],\n",
" [1.85501943e-08],\n",
" [1.46006212e-08],\n",
" [1.84133775e-08],\n",
" [1.85485796e-08],\n",
" [1.85067908e-08],\n",
" [1.82493309e-08],\n",
" [6.89084345e-11],\n",
" [8.28668578e-10],\n",
" [1.07933635e-08],\n",
" [1.85515319e-08],\n",
" [1.85225328e-08],\n",
" [7.60147223e-10],\n",
" [1.85095050e-08],\n",
" [1.85494926e-08],\n",
" [1.08006990e-08],\n",
" [8.32950930e-10],\n",
" [1.85594402e-08],\n",
" [1.85043572e-08],\n",
" [8.32338920e-10],\n",
" [1.06252411e-08],\n",
" [1.84166460e-08],\n",
" [8.87902418e-10],\n",
" [1.30626399e-09],\n",
" [1.90158911e-09],\n",
" [1.52603730e-09],\n",
" [1.85479436e-08],\n",
" [1.81277979e-08],\n",
" [1.85445028e-08],\n",
" [1.07889999e-08],\n",
" [1.08028475e-08],\n",
" [1.07853069e-08],\n",
" [1.83585698e-08],\n",
" [1.66110670e-09],\n",
" [1.93041028e-09],\n",
" [1.07667084e-08],\n",
" [1.07535723e-08],\n",
" [7.87128696e-10],\n",
" [1.75856734e-08],\n",
" [8.67216854e-10],\n",
" [1.84741378e-08],\n",
" [1.85206339e-08],\n",
" [7.79589948e-10],\n",
" [9.78929027e-09],\n",
" [8.62705463e-10],\n",
" [1.06933911e-08],\n",
" [1.13852150e-10],\n",
" [1.07922782e-08],\n",
" [1.07912497e-08],\n",
" [1.85296862e-08],\n",
" [4.91609288e-11],\n",
" [1.82137416e-08],\n",
" [1.07775824e-08],\n",
" [1.34694544e-09],\n",
" [1.07737055e-08],\n",
" [7.94075472e-10],\n",
" [1.07976224e-08],\n",
" [8.57651339e-10],\n",
" [1.06828555e-08],\n",
" [1.21420962e-08],\n",
" [1.79951183e-08],\n",
" [1.78354647e-08],\n",
" [1.84203852e-08],\n",
" [1.07947162e-08],\n",
" [9.85018733e-10],\n",
" [7.12441828e-10],\n",
" [1.82894304e-08],\n",
" [1.81422433e-08],\n",
" [1.42385170e-09],\n",
" [1.01230144e-08],\n",
" [1.07954108e-08],\n",
" [1.29947022e-08],\n",
" [1.04455360e-08],\n",
" [1.76217583e-08],\n",
" [1.07899165e-08],\n",
" [8.64446792e-10],\n",
" [9.82921522e-10],\n",
" [8.10801482e-10],\n",
" [9.68508940e-10],\n",
" [1.08095408e-08],\n",
" [1.05149960e-08],\n",
" [1.07329514e-08],\n",
" [1.07827107e-08],\n",
" [1.78733828e-08],\n",
" [1.07987734e-08],\n",
" [9.37642186e-10],\n",
" [1.91362859e-09],\n",
" [1.84258564e-08],\n",
" [7.46206763e-10],\n",
" [1.85154487e-08],\n",
" [1.06191873e-08],\n",
" [8.05266964e-10],\n",
" [1.84539317e-08],\n",
" [1.84884428e-08],\n",
" [1.07847216e-08],\n",
" [7.65444708e-10],\n",
" [1.07683444e-08],\n",
" [1.03283115e-08],\n",
" [1.07973843e-08],\n",
" [1.08011964e-08],\n",
" [1.82511020e-08],\n",
" [7.32881700e-10],\n",
" [1.56540079e-08],\n",
" [1.85264000e-08],\n",
" [1.07988729e-08],\n",
" [7.56698038e-10],\n",
" [7.45338846e-10],\n",
" [1.84616251e-08],\n",
" [1.07629408e-08],\n",
" [1.81938387e-09],\n",
" [7.08268000e-10],\n",
" [1.00834638e-08],\n",
" [1.07876668e-08],\n",
" [7.60466301e-10],\n",
" [1.84836892e-08],\n",
" [1.82375786e-08],\n",
" [7.23514970e-10],\n",
" [1.07647251e-08],\n",
" [1.85511713e-08],\n",
" [1.69684284e-08],\n",
" [1.07262093e-08],\n",
" [1.25731936e-09],\n",
" [1.85585662e-08],\n",
" [1.07766001e-08],\n",
" [1.07434923e-08],\n",
" [1.07536975e-08],\n",
" [1.03105053e-08],\n",
" [1.84621616e-08],\n",
" [7.61398389e-10],\n",
" [1.84367686e-08],\n",
" [1.07405791e-08],\n",
" [1.40466716e-09],\n",
" [1.08037677e-08],\n",
" [1.07074678e-08],\n",
" [1.58409605e-08],\n",
" [1.85233624e-08],\n",
" [9.66643476e-09],\n",
" [1.85572375e-08],\n",
" [7.64926233e-10],\n",
" [1.85075919e-08],\n",
" [6.48838872e-10],\n",
" [1.41721423e-09],\n",
" [1.07223652e-08],\n",
" [1.83372801e-08],\n",
" [1.72032610e-10],\n",
" [1.01132713e-09],\n",
" [1.85487288e-08],\n",
" [1.84707591e-08],\n",
" [9.31928090e-10],\n",
" [1.84524911e-08],\n",
" [1.81442097e-08],\n",
" [1.84819910e-08],\n",
" [1.26733934e-09],\n",
" [2.92671998e-10],\n",
" [1.85098088e-08],\n",
" [1.85341698e-08],\n",
" [1.85235578e-08],\n",
" [1.03954267e-09],\n",
" [2.07360185e-10],\n",
" [1.53739332e-09],\n",
" [1.07246176e-08],\n",
" [1.07799094e-08],\n",
" [1.07757181e-08],\n",
" [1.85391471e-08],\n",
" [1.07643547e-08],\n",
" [1.85394491e-08],\n",
" [1.07754712e-08],\n",
" [1.85609785e-08],\n",
" [1.23019894e-09],\n",
" [1.40486844e-10],\n",
" [1.84178468e-08],\n",
" [1.11376808e-09],\n",
" [7.20859372e-10],\n",
" [1.85698052e-08],\n",
" [1.85411118e-08],\n",
" [1.85506632e-08],\n",
" [1.58691948e-09]], dtype=float32)}, 'log_std': Array([3.184018e-06], dtype=float32)}}), EmptyState())))"
]
},
"execution_count": 8,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"out['runner_state'][0]"
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {},
"outputs": [
{
"ename": "ValueError",
"evalue": "Destination /tmp/flax_ckpt/orbax/single_save already exists.",
"output_type": "error",
"traceback": [
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
"\u001b[0;31mValueError\u001b[0m Traceback (most recent call last)",
"Cell \u001b[0;32mIn[9], line 6\u001b[0m\n\u001b[1;32m 4\u001b[0m ckpt \u001b[38;5;241m=\u001b[39m {\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mmodel\u001b[39m\u001b[38;5;124m'\u001b[39m: out[\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mrunner_state\u001b[39m\u001b[38;5;124m'\u001b[39m][\u001b[38;5;241m0\u001b[39m]}\n\u001b[1;32m 5\u001b[0m save_args \u001b[38;5;241m=\u001b[39m orbax_utils\u001b[38;5;241m.\u001b[39msave_args_from_target(ckpt)\n\u001b[0;32m----> 6\u001b[0m \u001b[43morbax_checkpointer\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43msave\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;124;43m'\u001b[39;49m\u001b[38;5;124;43m/tmp/flax_ckpt/orbax/single_save\u001b[39;49m\u001b[38;5;124;43m'\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mckpt\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43msave_args\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43msave_args\u001b[49m\u001b[43m)\u001b[49m\n",
"File \u001b[0;32m~/Documents/Code/solarcarsim/.venv/lib/python3.12/site-packages/orbax/checkpoint/_src/checkpointers/checkpointer.py:201\u001b[0m, in \u001b[0;36mCheckpointer.save\u001b[0;34m(self, directory, force, *args, **kwargs)\u001b[0m\n\u001b[1;32m 199\u001b[0m directory\u001b[38;5;241m.\u001b[39mrmtree() \u001b[38;5;66;03m# Post-sync handled by create_tmp_directory.\u001b[39;00m\n\u001b[1;32m 200\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[0;32m--> 201\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;167;01mValueError\u001b[39;00m(\u001b[38;5;124mf\u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mDestination \u001b[39m\u001b[38;5;132;01m{\u001b[39;00mdirectory\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m already exists.\u001b[39m\u001b[38;5;124m'\u001b[39m)\n\u001b[1;32m 202\u001b[0m ckpt_args \u001b[38;5;241m=\u001b[39m construct_checkpoint_args(\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_handler, \u001b[38;5;28;01mTrue\u001b[39;00m, \u001b[38;5;241m*\u001b[39margs, \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mkwargs)\n\u001b[1;32m 203\u001b[0m tmpdir \u001b[38;5;241m=\u001b[39m asyncio_utils\u001b[38;5;241m.\u001b[39mrun_sync(\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mcreate_temporary_path(directory))\n",
"\u001b[0;31mValueError\u001b[0m: Destination /tmp/flax_ckpt/orbax/single_save already exists."
]
}
],
"source": [
"import orbax.checkpoint\n",
"from flax.training import orbax_utils\n",
"orbax_checkpointer = orbax.checkpoint.PyTreeCheckpointer()\n",
"ckpt = {'model': out['runner_state'][0]}\n",
"save_args = orbax_utils.save_args_from_target(ckpt)\n",
"orbax_checkpointer.save('/tmp/flax_ckpt/orbax/single_save', ckpt, save_args=save_args)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": ".venv",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.12.7"
}
},
"nbformat": 4,
"nbformat_minor": 2
}