pi-frame-server/src/imageproc.rs

292 lines
8.7 KiB
Rust

use image::RgbImage;
use palette::color_difference::{Ciede2000, EuclideanDistance};
use palette::{cast::FromComponents, IntoColor, Lab, Oklch, Srgb};
/// Palette used on the display; pixels can be one of these colors.
///
/// The RGB values are slightly adjusted to improve accuracy.
const DISPLAY_PALETTE: [Srgb; 7] = [
Srgb::new(0.047, 0.047, 0.055), // Black
Srgb::new(0.824, 0.824, 0.816), // White
Srgb::new(0.118, 0.376, 0.122), // Green
Srgb::new(0.114, 0.118, 0.667), // Blue
Srgb::new(0.549, 0.106, 0.114), // Red
Srgb::new(0.827, 0.788, 0.239), // Yellow
Srgb::new(0.757, 0.443, 0.165), // Orange
];
// TODO: support different color palettes.
#[derive(Debug, Clone, Copy, PartialEq, Eq)]
pub enum DisplayColor {
Black,
White,
Green,
Blue,
Red,
Yellow,
Orange,
}
impl From<DisplayColor> for Srgb {
fn from(value: DisplayColor) -> Self {
DISPLAY_PALETTE[value as usize]
}
}
impl DisplayColor {
fn from_u8(value: u8) -> Self {
match value {
0 => Self::Black,
1 => Self::White,
2 => Self::Green,
3 => Self::Blue,
4 => Self::Red,
5 => Self::Yellow,
6 => Self::Orange,
_ => panic!("unexpected DisplayColor {value}"),
}
}
fn into_byte(color1: Self, color2: Self) -> u8 {
let upper: u8 = color1.into();
let lower: u8 = color2.into();
upper << 4 | lower
}
}
impl From<DisplayColor> for u8 {
fn from(value: DisplayColor) -> Self {
value as Self
}
}
/// Buffer to be sent to the ``EInk`` display.
#[derive(Debug)]
pub struct EInkBuffer(Vec<DisplayColor>);
impl EInkBuffer {
#[must_use]
pub fn into_display_buffer(&self) -> Vec<u8> {
let mut buf = Vec::with_capacity(self.0.len() / 2);
for colors in self.0.chunks_exact(2) {
buf.push(DisplayColor::into_byte(colors[0], colors[1]));
}
buf
}
#[must_use]
pub fn new(width: usize, height: usize) -> Self {
let v = vec![DisplayColor::Black; width * height];
Self(v)
}
// pub fn make_image(&self) -> RgbImage {
// RgbImage::from_fn(800, 480, |x, y| {
// let srgb = Srgb::from(self.0[y * 800 + x]);
// })
// }
}
// impl EInkBuffer {
// /// Converts the EInkBuffer into data that can be sent over the SPI API
// /// Bin-packs the two 4-bit colors into bytes.
// pub fn into_buffer(&self) -> Vec<u8> {
// vec![]
// }
//
// pub fn new(width: usize, height: usize) -> EInkBuffer {
// EInkBuffer {
// data: vec![DisplayColor::Black; width * height],
// width,
// height,
// }
// }
// pub fn set(&mut self, x: usize, y: usize, value: DisplayColor) {
// self.data[x + y * self.width] = value;
// }
// pub fn get(&self, x:usize, y:usize) -> DisplayColor {
// self.data[x
// }
// }
pub trait Ditherer {
fn dither(&self, img: &RgbImage, output: &mut EInkBuffer);
}
/// Find the closest approximate palette color to the given sRGB value.
/// This uses euclidian distance in linear space.
#[must_use]
pub fn nearest_neighbor(input_color: Lab) -> (DisplayColor, Lab) {
let (nearest, _, color_diff) = DISPLAY_PALETTE
.iter()
.enumerate()
.map(|(idx, p_color)| {
let c: Lab = (*p_color).into_color();
(idx, input_color.difference(c), input_color - c)
})
.min_by(|(_, a, _), (_, b, _)| a.total_cmp(b))
.expect("could not find a color");
(DisplayColor::from_u8(nearest as u8), color_diff)
}
pub struct NNDither();
impl Ditherer for NNDither {
fn dither(&self, img: &RgbImage, output: &mut EInkBuffer) {
assert!(img.width() == 800);
assert!(img.height() == 480);
// sRGB view into the given image. zero copy!
let srgb = <&[Srgb<u8>]>::from_components(&**img);
for (idx, pixel) in srgb.iter().enumerate() {
let (n, _) = nearest_neighbor(pixel.into_format().into_color());
output.0[idx] = n;
}
}
}
/// Compute the vector index for a given image by using the size of rows. Assumes that images
/// are indexed in row-major order.
const fn coord_to_idx(x: u32, y: u32, xsize: u32) -> usize {
(y * xsize + x) as usize
}
/// Compute the error-adjusted new lab value based on the error value of the currently scanned
/// pixel multiplied by a scalar factor.
fn get_error_adjusted(orig: &Lab, err: &Lab, scalar: f32) -> Lab {
let (p_l, p_a, p_b) = orig.into_components();
let (err_l, err_a, err_b) = err.into_components();
Lab::from_components((
p_l + err_l * scalar,
p_a + err_a * scalar,
p_b + err_b * scalar,
))
}
/// ``DiffusionPoint`` is part of the diffusion matrix, represented by a shift in x and y and an error
/// scaling factor.
struct DiffusionPoint {
xshift: i32,
yshift: i32,
scale: f32,
}
impl DiffusionPoint {
/// Creates a new ``DiffusionPoint``
const fn new(xshift: i32, yshift: i32, scale: f32) -> Self {
Self {
xshift,
yshift,
scale,
}
}
}
static FLOYD_STEINBERG_POINTS: &[DiffusionPoint] = &[
DiffusionPoint::new(1, 0, 7.0 / 16.0),
DiffusionPoint::new(-1, 1, 3.0 / 16.0),
DiffusionPoint::new(0, 1, 5.0 / 16.0),
DiffusionPoint::new(1, 1, 1.0 / 16.0),
];
static ATKINSON_DITHER_POINTS: &[DiffusionPoint] = &[
DiffusionPoint::new(1, 0, 1.0 / 8.0),
DiffusionPoint::new(2, 0, 1.0 / 8.0),
DiffusionPoint::new(-1, 1, 1.0 / 8.0),
DiffusionPoint::new(0, 1, 1.0 / 8.0),
DiffusionPoint::new(1, 1, 1.0 / 8.0),
DiffusionPoint::new(0, 2, 1.0 / 8.0),
];
static SIERRA_DITHER_POINTS: &[DiffusionPoint] = &[
DiffusionPoint::new(1, 0, 5.0 / 32.0),
DiffusionPoint::new(2, 0, 3.0 / 32.0),
DiffusionPoint::new(-2, 1, 2.0 / 32.0),
DiffusionPoint::new(-1, 1, 4.0 / 32.0),
DiffusionPoint::new(0, 1, 5.0 / 32.0),
DiffusionPoint::new(1, 1, 4.0 / 32.0),
DiffusionPoint::new(2, 1, 2.0 / 32.0),
DiffusionPoint::new(-1, 2, 2.0 / 32.0),
DiffusionPoint::new(0, 2, 3.0 / 32.0),
DiffusionPoint::new(1, 2, 2.0 / 32.0),
];
static STUKI_DITHER_POINTS: &[DiffusionPoint] = &[
DiffusionPoint::new(1, 0, 8.0 / 42.0),
DiffusionPoint::new(2, 0, 4.0 / 42.0),
DiffusionPoint::new(-2, 1, 2.0 / 42.0),
DiffusionPoint::new(-1, 1, 4.0 / 42.0),
DiffusionPoint::new(0, 1, 8.0 / 42.0),
DiffusionPoint::new(1, 1, 4.0 / 42.0),
DiffusionPoint::new(2, 1, 2.0 / 42.0),
DiffusionPoint::new(-2, 2, 1.0 / 42.0),
DiffusionPoint::new(-1, 2, 2.0 / 42.0),
DiffusionPoint::new(0, 2, 4.0 / 42.0),
DiffusionPoint::new(1, 2, 2.0 / 42.0),
DiffusionPoint::new(1, 2, 1.0 / 42.0),
];
pub enum DiffusionMatrix {
FloydSteinberg,
Atkinson,
Sierra,
Stuki,
}
impl DiffusionMatrix {
fn value(&self) -> &'static [DiffusionPoint] {
match *self {
Self::FloydSteinberg => FLOYD_STEINBERG_POINTS,
Self::Atkinson => ATKINSON_DITHER_POINTS,
Self::Sierra => SIERRA_DITHER_POINTS,
Self::Stuki => STUKI_DITHER_POINTS,
}
}
}
pub struct ErrorDiffusionDither(DiffusionMatrix);
impl ErrorDiffusionDither {
#[must_use]
pub const fn new(dm: DiffusionMatrix) -> Self {
Self(dm)
}
}
impl Ditherer for ErrorDiffusionDither {
fn dither(&self, img: &RgbImage, output: &mut EInkBuffer) {
// create a copy of the image in Lab space, mutable.
let srgb = <&[Srgb<u8>]>::from_components(&**img);
let (xsize, ysize) = img.dimensions();
let mut temp_img: Vec<Lab> = Vec::with_capacity((xsize * ysize) as usize);
for pix in srgb {
temp_img.push(pix.into_format().into_color());
}
// now we take our units.
for y in 0..ysize {
for x in 0..xsize {
let index = coord_to_idx(x, y, xsize);
let curr_pix = temp_img[index];
let (nearest, err) = nearest_neighbor(curr_pix);
// set the color in the output buffer.
output.0[index] = nearest;
// take the error, and propagate it.
for point in self.0.value() {
let Some(target_x) = x.checked_add_signed(point.xshift) else {
continue;
};
let Some(target_y) = y.checked_add_signed(point.yshift) else {
continue;
};
let target = coord_to_idx(target_x, target_y, xsize);
if let Some(pix) = temp_img.get(target) {
temp_img[target] = get_error_adjusted(pix, &err, point.scale);
}
}
}
}
}
}