use image::{GrayImage, ImageBuffer, Luma, RgbImage}; use palette::FromColor; use serde::{Deserialize, Serialize}; use tracing::instrument; use image::Rgb as imgRgb; use palette::color_difference::Ciede2000; use palette::{cast::FromComponents, IntoColor, Lab, Srgb}; /// Palette used on the display; pixels can be one of these colors. /// /// The RGB values are slightly adjusted to improve accuracy. const DISPLAY_PALETTE: [Srgb; 7] = [ Srgb::new(0.047, 0.047, 0.055), // Black Srgb::new(0.824, 0.824, 0.816), // White Srgb::new(0.118, 0.376, 0.122), // Green Srgb::new(0.114, 0.118, 0.667), // Blue Srgb::new(0.549, 0.106, 0.114), // Red Srgb::new(0.827, 0.788, 0.239), // Yellow Srgb::new(0.757, 0.443, 0.165), // Orange ]; const SIMPLE_PALETTE: [Srgb; 7] = [ Srgb::new(0.0,0.0,0.0), // Black Srgb::new(1.0,1.0,1.0), // White Srgb::new(0.0, 1.0, 0.0), // Green Srgb::new(0.0, 0.0, 1.0), // Blue Srgb::new(1.0, 0.0, 0.0), // Red Srgb::new(1.0, 1.0, 0.0), // Yellow Srgb::new(0.757, 0.443, 0.165), // Orange ]; #[derive(strum::EnumString, Serialize, Deserialize, PartialEq, Eq, Debug)] pub enum DitherPalette { Default, Simple, } impl DitherPalette { pub fn value(&self) -> &[Srgb] { match self { Self::Default => &DISPLAY_PALETTE, Self::Simple => &DISPLAY_PALETTE, // FIXME: use simple pallete based on binary. } } } #[derive(strum::EnumString, Serialize, Deserialize, PartialEq, Eq, Debug)] pub enum DitherMethod { NearestNeighbor, FloydSteinberg, Atkinson, Stuki, Sierra, } impl DitherMethod { #[must_use] pub fn get_ditherer(&self) -> Box { match self { Self::NearestNeighbor => Box::new(NNDither {}), Self::Atkinson => Box::new(ErrorDiffusionDither::new(ATKINSON_DITHER_POINTS)), Self::FloydSteinberg => Box::new(ErrorDiffusionDither::new(FLOYD_STEINBERG_POINTS)), Self::Stuki => Box::new(ErrorDiffusionDither::new(STUKI_DITHER_POINTS)), Self::Sierra => Box::new(ErrorDiffusionDither::new(SIERRA_DITHER_POINTS)), } } } pub enum ProcessingError { DitherError, PaletteIndexError(usize), } /// Buffer to be sent to the ``EInk`` display. #[derive(Debug)] pub struct EInkImage { buf: ImageBuffer, Vec>, palette: Vec, } impl EInkImage { #[must_use] pub fn into_display_buffer(&self) -> Vec { let mut buf = Vec::with_capacity(self.buf.len() / 2); for pix in self.buf.chunks_exact(2) { buf.push(pix[0] << 4 | pix[1]); } buf } /// Convert the EInk-palette image into an RGB image to be viewed on a regular screen. #[must_use] pub fn into_rgbimage(&self) -> RgbImage { RgbImage::from_fn(self.buf.width(), self.buf.height(), |x, y| { let idx = self.buf.get_pixel(x, y).0[0]; let disp_color = self.palette.get(idx as usize).unwrap(); let arr: [u8; 3] = disp_color.into_format().into(); imgRgb(arr) }) } /// Constructs a new EInk Image based on the given color palette for /// color indexing. #[must_use] pub fn new(palette: Vec) -> Self { Self { buf: GrayImage::new(800, 480), palette, } } } impl Default for EInkImage { fn default() -> Self { Self::new(DISPLAY_PALETTE.to_vec()) } } pub trait Ditherer { fn dither(&mut self, img: &RgbImage, output: &mut EInkImage); } /// Find the closest approximate palette color to the given sRGB value. /// This uses euclidian distance in linear space. fn nearest_neighbor(input_color: Lab, palette: &[Srgb]) -> (u8, Lab) { let (nearest, _, color_diff) = palette .iter() .enumerate() .map(|(idx, p_color)| { let c: Lab = Lab::from_color(*p_color); (idx, input_color.difference(c), input_color - c) }) .min_by(|(_, a, _), (_, b, _)| a.total_cmp(b)) .expect("Should always find a color"); (nearest as u8, color_diff) } pub struct NNDither(); impl Ditherer for NNDither { fn dither(&mut self, img: &RgbImage, output: &mut EInkImage) { assert!(img.width() == 800); assert!(img.height() == 480); // sRGB view into the given image. zero copy! let srgb = <&[Srgb]>::from_components(&**img); for (idx, pix) in output.buf.iter_mut().enumerate() { let (n, _) = nearest_neighbor(srgb[idx].into_format().into_color(), &output.palette); *pix = n; } } } /// Compute the vector index for a given image by using the size of rows. Assumes that images /// are indexed in row-major order. const fn coord_to_idx(x: u32, y: u32, xsize: u32) -> usize { (y * xsize + x) as usize } /// Compute the error-adjusted new lab value based on the error value of the currently scanned /// pixel multiplied by a scalar factor. fn compute_error_adjusted_color(orig: &Lab, err: &Lab, weight: f32) -> Lab { let (orig_l, orig_a, orig_b) = orig.into_components(); let (err_l, err_a, err_b) = err.into_components(); Lab::from_components(( err_l.mul_add(weight, orig_l), // scalar * err_l + p_l err_a.mul_add(weight, orig_a), err_b.mul_add(weight, orig_b), )) } /// ``DiffusionPoint`` is part of the diffusion matrix, represented by a shift in x and y and an error /// scaling factor. #[derive(Debug)] struct DiffusionPoint { xshift: i32, yshift: i32, scale: f32, } impl DiffusionPoint { /// Creates a new ``DiffusionPoint`` const fn new(xshift: i32, yshift: i32, scale: f32) -> Self { Self { xshift, yshift, scale, } } } static FLOYD_STEINBERG_POINTS: &[DiffusionPoint] = &[ DiffusionPoint::new(1, 0, 7.0 / 16.0), DiffusionPoint::new(-1, 1, 3.0 / 16.0), DiffusionPoint::new(0, 1, 5.0 / 16.0), DiffusionPoint::new(1, 1, 1.0 / 16.0), ]; static ATKINSON_DITHER_POINTS: &[DiffusionPoint] = &[ DiffusionPoint::new(1, 0, 1.0 / 8.0), DiffusionPoint::new(2, 0, 1.0 / 8.0), DiffusionPoint::new(-1, 1, 1.0 / 8.0), DiffusionPoint::new(0, 1, 1.0 / 8.0), DiffusionPoint::new(1, 1, 1.0 / 8.0), DiffusionPoint::new(0, 2, 1.0 / 8.0), ]; static SIERRA_DITHER_POINTS: &[DiffusionPoint] = &[ DiffusionPoint::new(1, 0, 5.0 / 32.0), DiffusionPoint::new(2, 0, 3.0 / 32.0), DiffusionPoint::new(-2, 1, 2.0 / 32.0), DiffusionPoint::new(-1, 1, 4.0 / 32.0), DiffusionPoint::new(0, 1, 5.0 / 32.0), DiffusionPoint::new(1, 1, 4.0 / 32.0), DiffusionPoint::new(2, 1, 2.0 / 32.0), DiffusionPoint::new(-1, 2, 2.0 / 32.0), DiffusionPoint::new(0, 2, 3.0 / 32.0), DiffusionPoint::new(1, 2, 2.0 / 32.0), ]; static STUKI_DITHER_POINTS: &[DiffusionPoint] = &[ DiffusionPoint::new(1, 0, 8.0 / 42.0), DiffusionPoint::new(2, 0, 4.0 / 42.0), DiffusionPoint::new(-2, 1, 2.0 / 42.0), DiffusionPoint::new(-1, 1, 4.0 / 42.0), DiffusionPoint::new(0, 1, 8.0 / 42.0), DiffusionPoint::new(1, 1, 4.0 / 42.0), DiffusionPoint::new(2, 1, 2.0 / 42.0), DiffusionPoint::new(-2, 2, 1.0 / 42.0), DiffusionPoint::new(-1, 2, 2.0 / 42.0), DiffusionPoint::new(0, 2, 4.0 / 42.0), DiffusionPoint::new(1, 2, 2.0 / 42.0), DiffusionPoint::new(1, 2, 1.0 / 42.0), ]; pub type DiffusionMatrix<'a> = &'a [DiffusionPoint]; #[derive(Debug)] pub struct ErrorDiffusionDither<'a>(&'a [DiffusionPoint]); impl<'a> ErrorDiffusionDither<'a> { #[must_use] pub const fn new(dm: DiffusionMatrix<'a>) -> Self { Self(dm) } } impl<'a> Ditherer for ErrorDiffusionDither<'a> { #[instrument] fn dither(&mut self, img: &RgbImage, output: &mut EInkImage) { // create a copy of the image in Lab space, mutable. // first, a view into the rgb components let srgb = <&[Srgb]>::from_components(&**img); let (xsize, ysize) = img.dimensions(); // our destination buffer. let mut temp_img: Vec = Vec::with_capacity((xsize * ysize) as usize); for pix in srgb { temp_img.push(pix.into_format().into_color()); } // TODO: rework this to make more sense. for y in 0..ysize { for x in 0..xsize { let index = coord_to_idx(x, y, xsize); let curr_pix = temp_img[index]; let (nearest, err) = nearest_neighbor(curr_pix, &output.palette); // set the color in the output buffer. *output.buf.get_mut(index).unwrap() = nearest; // take the error, and propagate it. for point in self.0 { // bounds checking. let Some(target_x) = x.checked_add_signed(point.xshift) else { continue; }; let Some(target_y) = y.checked_add_signed(point.yshift) else { continue; }; let target = coord_to_idx(target_x, target_y, xsize); if let Some(pix) = temp_img.get(target) { temp_img[target] = compute_error_adjusted_color(pix, &err, point.scale); } } } } } }