gotelem/xbee/session.go
2023-05-07 08:39:10 -05:00

216 lines
6.1 KiB
Go

package xbee
import (
"bufio"
"fmt"
"io"
"sync"
"golang.org/x/exp/slog"
)
// todo: make transport-agnostic (serial port or TCP/IP)
// A session is a simple way to manage an xbee device.
// it provides io.Reader and io.Writer, as well as some extra functions to handle
// custom Xbee frames.
// type Session interface {
// io.ReadWriteCloser
// GetStatus() // todo: figure out signature for this
// // Dial takes an address and allows direct communication with that
// // device, without using broadcast.
// Dial(addr uint64) io.ReadWriteCloser
// // AT command related functions - query, set on local, query, set on remote.
// ATCommand(cmd ATCmd, queued bool) (resp ATCmd, err error)
// RemoteATCommand(cmd ATCmd, addr uint64) (resp ATCmd, err error)
// }
type Session struct {
ioDev io.ReadWriteCloser
ct connTrack
slog.Logger
// this buffer is used for storing data that must be read at some point.
rxBuf *bufio.ReadWriter
writeLock sync.Mutex // prevents multiple writers from accessing the port at once.
}
func NewSession(dev io.ReadWriteCloser, baseLog *slog.Logger) (*Session, error) {
// make the session with the port/mode given, and set up the conntrack.
sess := &Session{
ioDev: dev,
Logger: *baseLog,
ct: *NewConnTrack(),
}
// setup io readwriter with a pipe.
rd, wr := io.Pipe()
// this is for reading data *only* - writes are different! it's a
// readWriter because the goroutine that runs scan continuously (and handles all other packets)
// will write to the buffer when new Rx packets come in, and we can read out from application code.
sess.rxBuf = bufio.NewReadWriter(bufio.NewReader(rd), bufio.NewWriter(wr))
// start the rx handler in the background. we close it later by closing the serial port.
go sess.rxHandler()
return sess, nil
}
// before we can write `Read(p []byte)` we have to have a goroutine that takes the input from
// the serial port and parses it out - if it's data, we push the data to a buffer for
// the application to read the bytes on its own.
//
// if it's a different kind of packet, we do custom functionality (free the conntrack, update
// local status, etc)
func (sess *Session) rxHandler() {
// we wrap the serial port read line in a bufio.scanner using our custom split function.
scan := bufio.NewScanner(sess.ioDev)
scan.Split(xbeeFrameSplit)
for scan.Scan() {
data, err := parseFrame(scan.Bytes())
if err != nil {
sess.Logger.Warn("error parsing frame", "error", err, "data", data)
continue
}
switch XBeeCmd(data[0]) {
case RxPktType:
// we parse the data, and push it to the rx buffer.
//TODO: if we have multiple remotes on the network, we need to track them here.
frame, err := ParseRxFrame(data)
if err != nil {
sess.Logger.Warn("error parsing rx packet", "error", err, "data", data)
break //continue?
}
// take the data and write it to our internal rx packet buffer.
_, err = sess.rxBuf.Write(frame.Payload)
if err != nil {
sess.Logger.Warn("error writing data", "error", err, "payload", frame.Payload)
}
case TxStatusType, ATCmdResponseType, RemoteCmdRespType:
// we hand the frame back via the channel. we directly find the ID since it's always
// the second byte.
idx := data[1]
err := sess.ct.ClearMark(idx, data)
if err != nil {
// we got a rogue packet lol
sess.Logger.Warn("rogue frame ID", "id", idx, "error", err)
}
default:
// we don't know what to do with it.
sess.Logger.Info("unhandled packet type", "type", data[0], "id", data[1])
}
}
// if we get here, the serial port has closed. this is fine.
}
// This implements io.Reader for the UART Session.
func (sess *Session) Read(p []byte) (int, error) {
// Since we have an rx buffer, we just read from that and return the results.
return sess.rxBuf.Read(p)
}
func (sess *Session) Write(p []byte) (n int, err error) {
sess.Warn("hello")
idx, ch, err := sess.ct.GetMark()
if err != nil {
return
}
n = len(p)
wf := &TxFrame{
Id: idx,
Destination: BroadcastAddr,
Payload: p,
}
// write the actual packet
sess.writeLock.Lock()
_, err = writeXBeeFrame(sess.ioDev, wf.Bytes())
sess.writeLock.Unlock()
if err != nil {
return
}
// finally, wait for the channel we got to return. this means that
// the matching response frame was received, so we can parse it.
// TODO: add timeout.
responseFrame := <-ch
// this is a tx status frame bytes, so lets parse it out.
status, err := ParseTxStatusFrame(responseFrame)
if err != nil {
return
}
if status.Status != 0 {
err = fmt.Errorf("tx failed 0x%x", status.Status)
}
return
}
// sends a local AT command. If `queued` is true, the command is not immediately applied;
// instead, an AC command must be set to apply the queued changes. `queued` does not
// affect query-type commands, which always return right away.
// the AT command is an interface.
func (sess *Session) ATCommand(cmd [2]rune, data []byte, queued bool) ([]byte, error) {
// we must encode the command, and then create the actual packet.
// then we send the packet, and wait for the response
// TODO: how to handle multiple-response-packet AT commands?
// (mainly Node Discovery ND)
// get a mark for the frame
idx, ch, err := sess.ct.GetMark()
if err != nil {
return nil, err
}
rawData := encodeATCommand(cmd, data, idx, queued)
sess.writeLock.Lock()
_, err = writeXBeeFrame(sess.ioDev, rawData)
sess.writeLock.Unlock()
if err != nil {
return nil, fmt.Errorf("error writing xbee frame: %w", err)
}
// TODO: add timeout.
resp, err := ParseATCmdResponse(<-ch)
if err != nil {
return nil, err
}
if resp.Status != 0 {
// sinec ATCmdStatus is a stringer thanks to the generator
return resp.Data, fmt.Errorf("AT command failed: %v", resp.Status)
}
return resp.Data, nil
}
// Does this need to exist?
func (sess *Session) GetStatus() {
panic("TODO: implement")
}
// Implement the io.Closer.
func (sess *Session) Close() error {
return sess.ioDev.Close()
}
// next, we define AT commands. These are functions that take in a Session and
// provide wrappers around AT command information, like type checking.
//