This commit is contained in:
saji 2023-06-24 00:15:42 -05:00
parent aa0b61405b
commit 82c6e962db
2 changed files with 62 additions and 22 deletions

View file

@ -29,9 +29,11 @@ func TelemRouter(log *slog.Logger, broker *JBroker) http.Handler {
w.Write([]byte(skylab.SkylabDefinitions)) w.Write([]byte(skylab.SkylabDefinitions))
}) })
// heartbeat request.
r.Get("/ping", func(w http.ResponseWriter, r *http.Request) { r.Get("/ping", func(w http.ResponseWriter, r *http.Request) {
w.Write([]byte("pong")) w.Write([]byte("pong"))
}) })
r.Mount("/api/v1", apiV1(broker)) r.Mount("/api/v1", apiV1(broker))
// To future residents - you can add new API calls/systems in /api/v2 // To future residents - you can add new API calls/systems in /api/v2

View file

@ -1,11 +1,12 @@
# hyperspeed forward and backwards analytics engine # hyperspeed forward and backwards analytics engine
import numpy.typing as npt
from scipy.integrate import solve_bvp, solve_ivp
from jax import jit, grad, vmap import numpy as np
import jax.numpy as np from numba import jit
# import jax.numpy as np
# TODO: define 3d vector space - x,y,z oriented around car/world? # TODO: define 3d vector space - x,y,z oriented around car/world?
@ -48,16 +49,16 @@ EARTH_AXIS_INCLINATION = 23.45 # degrees
@jit @jit
def get_pressure_el( def get_pressure_el(
el: float, el: float,
Ps=STANDARD_PRES, Ps=STANDARD_PRES,
Ts: float = STANDARD_TEMP, Ts: float = STANDARD_TEMP,
T_lapse: float = EARTH_TEMP_LAPSE, T_lapse: float = EARTH_TEMP_LAPSE,
): ):
"""Gets the pressure at a point given eleveation - assumes """Gets the pressure at a point given eleveation - assumes
standard pressure,temperature, gas constants, etc""" standard pressure,temperature, gas constants, etc"""
return Ps * (Ts / (Ts + T_lapse * el)) ** ( return Ps * (Ts / (Ts + T_lapse * el)) ** (
(ATM_MOLAR_MASS * EARTH_GRAVITY) / (AIR_GAS_CONSTANT / T_lapse) (ATM_MOLAR_MASS * EARTH_GRAVITY) / (AIR_GAS_CONSTANT / T_lapse)
) )
@ -70,7 +71,7 @@ def make_cubic(a, b, c, d):
"""returns a simple cubic function""" """returns a simple cubic function"""
def poly(x): def poly(x):
return a + b * x + c * (x**2) + (x**3) / d return a + b * x + c * (x ** 2) + (x ** 3) / d
return jit(poly) return jit(poly)
@ -484,16 +485,18 @@ def helio_vector(vec, jme):
) )
def solar_position(timestamp, latitude, longitude): def solar_position(timestamp, latitude, longitude, elevation):
"""Calculate the position of the sun at a given location and time. """Calculate the position of the sun at a given location and time.
Args: Args:
timestamp (array-like): The timestamp(s) to calculate. timestamp (array-like): The timestamp(s) at each point.
latitude (array-like): The latitude(s) of each point.
longitude (array-like): The longitude(s) of each point.
elevation (array-like): The elevation of each point.
Returns: Returns:
ndarray: An array containing the altitude and azimuth for each timestamp. ndarray: An array containing the altitude and azimuth for each point.
""" """
timestamp = np.array(timestamp)
jd = timestamp / 86400.0 + 2440587.5 jd = timestamp / 86400.0 + 2440587.5
jc = (jd - 2451545) / 36525 jc = (jd - 2451545) / 36525
@ -509,7 +512,7 @@ def solar_position(timestamp, latitude, longitude):
# heliocentric longitude # heliocentric longitude
l_rad = np.zeros_like(timestamp) l_rad = np.zeros_like(timestamp)
for idx, vec in enumerate(HELIO_L): for idx, vec in enumerate(HELIO_L):
l_rad = l_rad + helio_vector(vec, jme) * jme**idx l_rad = l_rad + helio_vector(vec, jme) * jme ** idx
l_rad = l_rad / 10e8 l_rad = l_rad / 10e8
l_deg = np.rad2deg(l_rad) % 360 l_deg = np.rad2deg(l_rad) % 360
@ -517,14 +520,14 @@ def solar_position(timestamp, latitude, longitude):
# heliocentric latitude # heliocentric latitude
b_rad = np.zeros_like(timestamp) b_rad = np.zeros_like(timestamp)
for idx, vec in enumerate(HELIO_B): for idx, vec in enumerate(HELIO_B):
b_rad = b_rad + helio_vector(vec, jme) * jme**idx b_rad = b_rad + helio_vector(vec, jme) * jme ** idx
b_rad = b_rad / 10e8 b_rad = b_rad / 10e8
b_deg = np.rad2deg(b_rad) % 360 b_deg = np.rad2deg(b_rad) % 360
# heliocentric radius # heliocentric radius
r_rad = np.zeros_like(timestamp) r_rad = np.zeros_like(timestamp)
for idx, vec in enumerate(HELIO_R): for idx, vec in enumerate(HELIO_R):
r_rad = r_rad + helio_vector(vec, jme) * jme**idx r_rad = r_rad + helio_vector(vec, jme) * jme ** idx
r_rad = r_rad / 10e8 r_rad = r_rad / 10e8
r_deg = np.rad2deg(r_rad) % 360 r_deg = np.rad2deg(r_rad) % 360
@ -532,7 +535,7 @@ def solar_position(timestamp, latitude, longitude):
beta = -1 * b_deg beta = -1 * b_deg
def cubic_poly(a, b, c, d): def cubic_poly(a, b, c, d):
return a + b * jce + c * jce**2 + (jce**3) / d return a + b * jce + c * jce ** 2 + (jce ** 3) / d
X0 = cubic_poly(297.85036, 445267.111480, -0.0019142, 189474) X0 = cubic_poly(297.85036, 445267.111480, -0.0019142, 189474)
X1 = cubic_poly(357.52772, 35999.050340, -0.0001603, -300000) X1 = cubic_poly(357.52772, 35999.050340, -0.0001603, -300000)
@ -544,19 +547,19 @@ def solar_position(timestamp, latitude, longitude):
nut = NUTATION_ABCD_ARRAY nut = NUTATION_ABCD_ARRAY
## TODO: these are gross - use loops instead of broadcasting? # TODO: these are gross - use loops instead of broadcasting?
# FIXME: use guvectorize, treat jce as a scalar.
d_psi = (nut[:, 0] + jce[..., np.newaxis] * nut[:, 1]) * np.sin( d_psi = (nut[:, 0] + jce[..., np.newaxis] * nut[:, 1]) * np.sin(
np.sum(X[:, np.newaxis, :] * NUTATION_YTERM_ARRAY[np.newaxis, ...], axis=2) np.sum(X[:, np.newaxis, :] * NUTATION_YTERM_ARRAY[np.newaxis, ...], axis=2)
) )
d_psi = np.sum(d_psi, axis=-1) / 36, 000, 000 d_psi = np.sum(d_psi, axis=-1) / 36, 000, 000
d_epsilon = (nut[:, 2] + jce[..., np.newaxis] * nut[:, 3]) * np.cos( d_epsilon = (nut[:, 2] + jce[..., np.newaxis] * nut[:, 3]) * np.cos(
np.sum(X[:, np.newaxis, :] * NUTATION_YTERM_ARRAY[np.newaxis, ...], axis=2) np.sum(X[:, np.newaxis, :] * NUTATION_YTERM_ARRAY[np.newaxis, ...], axis=2)
) )
d_epsilon = np.sum(d_epsilon, axis=-1) / 36, 000, 000 d_epsilon = np.sum(d_epsilon, axis=-1) / 36, 000, 000
u = jme[:, np.newaxis] / 10 * np.arange(0,10).reshape((1,-1)) u = jme[:, np.newaxis] / 10 * np.arange(0, 10).reshape((1, -1))
epsilon_0 = np.array( epsilon_0 = np.array(
[ [
84381.448, 84381.448,
@ -576,3 +579,38 @@ def solar_position(timestamp, latitude, longitude):
d_tau = -20.4898 / (3600 * r_deg) d_tau = -20.4898 / (3600 * r_deg)
sun_longitude = theta + d_psi + d_tau sun_longitude = theta + d_psi + d_tau
v_0 = 280.46061837 + 360.98564736629 * (jd - 2451545) + 0.000387933 * jc ** 2 - jc ** 3 / 38710000
v_0 = v_0 % 360
v = v_0 + d_psi * np.cos(np.deg2rad(epsilon))
alpha = np.arctan2(np.sin(np.radians(sun_longitude)) *
np.cos(np.radians(epsilon)) -
np.tan(np.radians(beta)) *
np.sin(np.radians(epsilon)),
np.cos(np.radians(sun_longitude)))
alpha_deg = np.rad2deg(alpha) % 360
delta = np.arcsin(
np.sin(np.radians(beta)) *
np.cos(np.radians(epsilon)) +
np.cos(np.radians(beta)) *
np.sin(np.radians(epsilon)) *
np.cos(np.radians(sun_longitude))
)
delta_deg = np.rad2deg(delta) % 360
h = v + latitude - alpha_deg
xi_deg = 8.794 / (3600 * r_deg)
u = np.arctan(0.99664719 * np.tan(latitude))
x = np.cos(u) + elevation / 6378140 * np.cos(latitude)
y = 0.99664719 * np.sin(u) + elevation / 6378140 * np.sin(latitude)
d_alpha = np.arctan2(-1 * x * np.sin(np.radians(xi_deg)) * np.sin(np.radians(h)), np.cos(delta))
d_alpha = np.rad2deg(d_alpha)
alpha_prime = alpha_deg + d_alpha
delta_prime = np.arctan2((np.sin(delta) - y * np.sin(np.radians(xi_deg))) * np.cos(np.radians(d_alpha)),
np.cos(delta) - x * np.sin(np.radians(xi_deg)) * np.cos(np.radians(h)))
topo_local_hour_angle_deg = h - d_alpha