more
This commit is contained in:
parent
aa0b61405b
commit
82c6e962db
2
http.go
2
http.go
|
@ -29,9 +29,11 @@ func TelemRouter(log *slog.Logger, broker *JBroker) http.Handler {
|
|||
w.Write([]byte(skylab.SkylabDefinitions))
|
||||
})
|
||||
|
||||
// heartbeat request.
|
||||
r.Get("/ping", func(w http.ResponseWriter, r *http.Request) {
|
||||
w.Write([]byte("pong"))
|
||||
})
|
||||
|
||||
r.Mount("/api/v1", apiV1(broker))
|
||||
|
||||
// To future residents - you can add new API calls/systems in /api/v2
|
||||
|
|
|
@ -1,11 +1,12 @@
|
|||
# hyperspeed forward and backwards analytics engine
|
||||
|
||||
import numpy.typing as npt
|
||||
from scipy.integrate import solve_bvp, solve_ivp
|
||||
|
||||
from jax import jit, grad, vmap
|
||||
import numpy as np
|
||||
|
||||
import jax.numpy as np
|
||||
from numba import jit
|
||||
|
||||
|
||||
# import jax.numpy as np
|
||||
|
||||
|
||||
# TODO: define 3d vector space - x,y,z oriented around car/world?
|
||||
|
@ -48,16 +49,16 @@ EARTH_AXIS_INCLINATION = 23.45 # degrees
|
|||
|
||||
@jit
|
||||
def get_pressure_el(
|
||||
el: float,
|
||||
Ps=STANDARD_PRES,
|
||||
Ts: float = STANDARD_TEMP,
|
||||
T_lapse: float = EARTH_TEMP_LAPSE,
|
||||
el: float,
|
||||
Ps=STANDARD_PRES,
|
||||
Ts: float = STANDARD_TEMP,
|
||||
T_lapse: float = EARTH_TEMP_LAPSE,
|
||||
):
|
||||
"""Gets the pressure at a point given eleveation - assumes
|
||||
standard pressure,temperature, gas constants, etc"""
|
||||
|
||||
return Ps * (Ts / (Ts + T_lapse * el)) ** (
|
||||
(ATM_MOLAR_MASS * EARTH_GRAVITY) / (AIR_GAS_CONSTANT / T_lapse)
|
||||
(ATM_MOLAR_MASS * EARTH_GRAVITY) / (AIR_GAS_CONSTANT / T_lapse)
|
||||
)
|
||||
|
||||
|
||||
|
@ -70,7 +71,7 @@ def make_cubic(a, b, c, d):
|
|||
"""returns a simple cubic function"""
|
||||
|
||||
def poly(x):
|
||||
return a + b * x + c * (x**2) + (x**3) / d
|
||||
return a + b * x + c * (x ** 2) + (x ** 3) / d
|
||||
|
||||
return jit(poly)
|
||||
|
||||
|
@ -484,16 +485,18 @@ def helio_vector(vec, jme):
|
|||
)
|
||||
|
||||
|
||||
def solar_position(timestamp, latitude, longitude):
|
||||
def solar_position(timestamp, latitude, longitude, elevation):
|
||||
"""Calculate the position of the sun at a given location and time.
|
||||
|
||||
Args:
|
||||
timestamp (array-like): The timestamp(s) to calculate.
|
||||
timestamp (array-like): The timestamp(s) at each point.
|
||||
latitude (array-like): The latitude(s) of each point.
|
||||
longitude (array-like): The longitude(s) of each point.
|
||||
elevation (array-like): The elevation of each point.
|
||||
|
||||
Returns:
|
||||
ndarray: An array containing the altitude and azimuth for each timestamp.
|
||||
ndarray: An array containing the altitude and azimuth for each point.
|
||||
"""
|
||||
timestamp = np.array(timestamp)
|
||||
jd = timestamp / 86400.0 + 2440587.5
|
||||
jc = (jd - 2451545) / 36525
|
||||
|
||||
|
@ -509,7 +512,7 @@ def solar_position(timestamp, latitude, longitude):
|
|||
# heliocentric longitude
|
||||
l_rad = np.zeros_like(timestamp)
|
||||
for idx, vec in enumerate(HELIO_L):
|
||||
l_rad = l_rad + helio_vector(vec, jme) * jme**idx
|
||||
l_rad = l_rad + helio_vector(vec, jme) * jme ** idx
|
||||
|
||||
l_rad = l_rad / 10e8
|
||||
l_deg = np.rad2deg(l_rad) % 360
|
||||
|
@ -517,14 +520,14 @@ def solar_position(timestamp, latitude, longitude):
|
|||
# heliocentric latitude
|
||||
b_rad = np.zeros_like(timestamp)
|
||||
for idx, vec in enumerate(HELIO_B):
|
||||
b_rad = b_rad + helio_vector(vec, jme) * jme**idx
|
||||
b_rad = b_rad + helio_vector(vec, jme) * jme ** idx
|
||||
b_rad = b_rad / 10e8
|
||||
b_deg = np.rad2deg(b_rad) % 360
|
||||
|
||||
# heliocentric radius
|
||||
r_rad = np.zeros_like(timestamp)
|
||||
for idx, vec in enumerate(HELIO_R):
|
||||
r_rad = r_rad + helio_vector(vec, jme) * jme**idx
|
||||
r_rad = r_rad + helio_vector(vec, jme) * jme ** idx
|
||||
r_rad = r_rad / 10e8
|
||||
r_deg = np.rad2deg(r_rad) % 360
|
||||
|
||||
|
@ -532,7 +535,7 @@ def solar_position(timestamp, latitude, longitude):
|
|||
beta = -1 * b_deg
|
||||
|
||||
def cubic_poly(a, b, c, d):
|
||||
return a + b * jce + c * jce**2 + (jce**3) / d
|
||||
return a + b * jce + c * jce ** 2 + (jce ** 3) / d
|
||||
|
||||
X0 = cubic_poly(297.85036, 445267.111480, -0.0019142, 189474)
|
||||
X1 = cubic_poly(357.52772, 35999.050340, -0.0001603, -300000)
|
||||
|
@ -544,19 +547,19 @@ def solar_position(timestamp, latitude, longitude):
|
|||
|
||||
nut = NUTATION_ABCD_ARRAY
|
||||
|
||||
## TODO: these are gross - use loops instead of broadcasting?
|
||||
# TODO: these are gross - use loops instead of broadcasting?
|
||||
# FIXME: use guvectorize, treat jce as a scalar.
|
||||
d_psi = (nut[:, 0] + jce[..., np.newaxis] * nut[:, 1]) * np.sin(
|
||||
np.sum(X[:, np.newaxis, :] * NUTATION_YTERM_ARRAY[np.newaxis, ...], axis=2)
|
||||
)
|
||||
d_psi = np.sum(d_psi, axis=-1) / 36, 000, 000
|
||||
|
||||
|
||||
d_epsilon = (nut[:, 2] + jce[..., np.newaxis] * nut[:, 3]) * np.cos(
|
||||
np.sum(X[:, np.newaxis, :] * NUTATION_YTERM_ARRAY[np.newaxis, ...], axis=2)
|
||||
)
|
||||
d_epsilon = np.sum(d_epsilon, axis=-1) / 36, 000, 000
|
||||
|
||||
u = jme[:, np.newaxis] / 10 * np.arange(0,10).reshape((1,-1))
|
||||
u = jme[:, np.newaxis] / 10 * np.arange(0, 10).reshape((1, -1))
|
||||
epsilon_0 = np.array(
|
||||
[
|
||||
84381.448,
|
||||
|
@ -575,4 +578,39 @@ def solar_position(timestamp, latitude, longitude):
|
|||
epsilon = np.sum(u * epsilon_0, axis=-1) / 3600 + d_epsilon
|
||||
d_tau = -20.4898 / (3600 * r_deg)
|
||||
sun_longitude = theta + d_psi + d_tau
|
||||
|
||||
|
||||
v_0 = 280.46061837 + 360.98564736629 * (jd - 2451545) + 0.000387933 * jc ** 2 - jc ** 3 / 38710000
|
||||
v_0 = v_0 % 360
|
||||
|
||||
v = v_0 + d_psi * np.cos(np.deg2rad(epsilon))
|
||||
|
||||
alpha = np.arctan2(np.sin(np.radians(sun_longitude)) *
|
||||
np.cos(np.radians(epsilon)) -
|
||||
np.tan(np.radians(beta)) *
|
||||
np.sin(np.radians(epsilon)),
|
||||
np.cos(np.radians(sun_longitude)))
|
||||
alpha_deg = np.rad2deg(alpha) % 360
|
||||
delta = np.arcsin(
|
||||
np.sin(np.radians(beta)) *
|
||||
np.cos(np.radians(epsilon)) +
|
||||
np.cos(np.radians(beta)) *
|
||||
np.sin(np.radians(epsilon)) *
|
||||
np.cos(np.radians(sun_longitude))
|
||||
)
|
||||
delta_deg = np.rad2deg(delta) % 360
|
||||
|
||||
h = v + latitude - alpha_deg
|
||||
|
||||
xi_deg = 8.794 / (3600 * r_deg)
|
||||
u = np.arctan(0.99664719 * np.tan(latitude))
|
||||
|
||||
x = np.cos(u) + elevation / 6378140 * np.cos(latitude)
|
||||
|
||||
y = 0.99664719 * np.sin(u) + elevation / 6378140 * np.sin(latitude)
|
||||
|
||||
d_alpha = np.arctan2(-1 * x * np.sin(np.radians(xi_deg)) * np.sin(np.radians(h)), np.cos(delta))
|
||||
d_alpha = np.rad2deg(d_alpha)
|
||||
alpha_prime = alpha_deg + d_alpha
|
||||
delta_prime = np.arctan2((np.sin(delta) - y * np.sin(np.radians(xi_deg))) * np.cos(np.radians(d_alpha)),
|
||||
np.cos(delta) - x * np.sin(np.radians(xi_deg)) * np.cos(np.radians(h)))
|
||||
topo_local_hour_angle_deg = h - d_alpha
|
||||
|
|
Loading…
Reference in a new issue